
Building Agents with
OpenAI Agents SDK

Create practical AI agents and agentic
systems through hands-on projects

Henry Habib

EXPERT INSIGHTBuilding A
gents w

ith O
penA

I A
gents SD

K
H

enry H
abib

Things you will learn:

• Understand the core principles of AI
agents and why they matt er

• Use the OpenAI Agents SDK to build
real, working agents from scratch

• Design both single-agent and multi-
agent systems

• Integrate external tools, APIs, and data
sources to extend agent capabilities

• Add memory and stateful context to
your agents so they can “remember”
and adapt over time

• Coordinate agent-to-agent handoff
orchestrations

• Secure, monitor, and scale agents in
production

www.packtpub.com

Everyone's talking about AI agents, but how do you build one
that works in the real world? Not a toy demo, but an agent
that solves real problems, saves time, and integrates into
workfl ows. With vague frameworks, fragmented tooling,
and endless hype, most developers are left without a clear
path. The hardest part isn't technical; it is knowing where
to start.

This book gives you that starting point. It's a complete guide
to building intelligent AI agents and agentic systems using
the off icial OpenAI Agents SDK. It begins by grounding you
in the core concepts, design principles, and architecture of
AI agents, how they diff er from other traditional systems,
their advantages, and why that matt ers.

Through practical step-by-step projects, you'll master
every feature of the SDK—tools, memory, RAG, multi-
agent orchestration, tracing, handoff s, and more—while
contributing to an end-to-end agent system that grows in
complexity. Projects include a custom support agent, invoice
and inventory assistant, health advisor, sales trainer, and
data analyst, giving you production-ready skills.

By the end, you'll know how to design, build, and deploy
agentic systems that interact with APIs, query databases,
hand off to external systems, and drive meaningful
outcomes. You won't just understand AI agents; you'll be
ready to ship them.

Building Agents with
OpenAI Agents SDK

Join our book's Discord space

https://packt.link/z8ivB

Subscribe to AI_Distilled, the go-to
newsletter for AI professionals

https://packt.link/8Oz6Y

Building Agents with OpenAI
Agents SDK

Create practical AI agents and agentic systems through
hands-on projects

Henry Habib

Building Agents with OpenAI Agents SDK
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author nor Packt Publishing or its dealers and distributors will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Gebin George

Relationship Lead: Vignesh Raju

Project Manager: Prajakta Naik

Content Engineer: Aditi Chatterjee

Technical Editor: Rahul Limbachiya

Copy Editor: Safis Editing

Indexer: Manju Arasan

Proofreader: Aditi Chatterjee

Production Designer: Ajay Patule

Growth Lead: Nimisha Dua

First published: October 2025

Production reference:1260922

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80611-201-2

www.packtpub.com

www.packtpub.com

To Soniya, Booboo, Mom, Dad, Maheen, Karan, Riri, and Cece.

– Henry

Contributors

About the author

Henry Habib advises F500 companies on analytics and operations, with a particular focus

on building intelligent AI-driven solutions, tools, and agents to create impact and improve

productivity.

He teaches online courses on how to build AI agents and automations for work, as well as other

Gen AI topics, amassing a network of more than 400K students. He also facilitates technical

programs at businesses and governmental organizations. A proponent of the no-code and Gen

AI revolution, he believes that anyone can now create powerful and intelligent applications to

automate their work without any deep technical skills.

He also runs The Intelligent Worker, a platform for teaching working professionals how to be

more productive with Gen AI, no-code, automation, and other technologies, with courses and a

free newsletter. He is also a speaker on Gen AI to many large F500 organizations.

As an instructor, Henry is passionate about teaching students how to succeed on any topic related

to Gen AI, automation, no-code, data, and productivity. He does this by creating courses with

engaging and helpful content and always being around to answer any questions.

Henry resides in Toronto, Canada, with his wife, and enjoys building random AI apps and playing

tennis in his free time.

About the reviewer

Sankara Reddy Thamma is a seasoned solutions architect, technical delivery specialist, and AI

innovator with over 15 years of experience in driving large-scale enterprise modernization, cloud

migration, and AI-powered automation initiatives across industries, including banking, healthcare,

utilities, and manufacturing. His technical expertise spans legacy mainframe, IBM DataStage, big

data ecosystems, Snowflake, Databricks, agentic AI, and multi-cloud platforms (AWS, Azure, and

GCP), coupled with deep proficiency in cloud modernization and legacy modernization, making

him a trusted leader in transforming complex enterprise landscapes.

At the core of his contributions is a transformative vision of agentic AI. Beyond enterprise outcomes,

Thamma plays an active role in advancing the AI and technology community. He is a senior

member of IEEE, where he contributes as a peer reviewer across domains including AI, machine

learning, generative AI, and data engineering. His contributions extend into technical publishing,

serving as a technical book reviewer for Packt Publishing and Manning Publications, while also

supporting leading AI journals and editorial boards. His expertise is recognized globally, with

patents granted in the UK and India for intelligent code transformation leveraging agent-based

accelerators.

As a published researcher, he has authored works in IEEE, Springer, and Scopus journals, covering

themes such as secure prompt engineering, neurovisualization, and applied AI in healthcare. His

ability to bridge cutting-edge research with applied enterprise solutions positions him uniquely

at the intersection of theory and practice.

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/8Oz6Y or scan the QR code below.

https://packt.link/8Oz6Y

Table of Contents

Preface � xv

Your Book Comes with Exclusive Perks - Here’s How to Unlock Them ����������������������������� xxii

Part 1: AI Agents � 1

Chapter 1: Introduction to AI Agents � 3

Technical requirements ��� 4

Overview of AI agents �� 4

What is an AI agent? • 5

Understanding AI agents with a simple analogy • 5

Strengths and weaknesses of AI agents versus traditional systems • 6

Practical applications of AI agents ��� 7

Productivity gains • 7

Better interactivity • 9

New businesses • 9

Build methodology of AI agents ��� 10

Anatomy of an AI agent • 10

Model • 10

Tooling interface • 12

Memory and knowledge • 14

Table of Contentsviii

Design patterns • 16

CoT • 17

ReAct (Reasoning + Acting) • 17

Planner-execution • 17

Hierarchical/multi-agent • 17

Summary ��� 18

Chapter 2: Introduction to OpenAI Agents SDK � 21

Technical requirements ��� 22

Design features of OpenAI Agents SDK �� 22

Framework for building AI agents • 22

Multi-agent orchestration • 23

Minimal abstraction • 25

Pythonic, extensible, and open sourced • 25

Core primitives �� 26

Agent • 27

Runner • 28

Tools • 29

Handoff • 30

Guardrails • 31

Tracing • 32

Summary ��� 33

Chapter 3: Environment Setup and Developing Your First Agent � 35

Technical requirements ��� 36

Environment setup �� 36

Python version and dependencies • 36

Project directory, virtual environment, and installations • 37

Registering for OpenAI API and setting up the API key • 38

Verifying the environment setup • 41

Alternative methods: Google Colab • 43

Table of Contents ix

Development prerequisites �� 44

Python functions architecture • 44

Python asynchronous programming • 46

Python Pydantic data validation • 47

Developing your first AI Agent ��� 48

A simple customer service agent • 48

Adding a tool • 51

Adding a handoff • 55

Summary ��� 57

Part 2: OpenAI Agents SDK � 59

Chapter 4: Agent Tools and MCPs � 61

Technical requirements ��� 62

Using custom tools with Python functions �� 62

Defining a new tool • 62

Agent and tool behavior • 65

Tool choice • 65

Tool use behavior • 67

Complex tool inputs with Pydantic • 68

Examples of custom tools • 70

Arithmetic computation tool • 70

External API call tool • 73

Database query tool • 76

Chained tool calls • 78

OpenAI hosted tools �� 80

WebSearchTool • 81

FileSearchTool • 84

ImageGenerationTool • 87

CodeInterpreterTool • 89

Table of Contentsx

Handoff versus agent-as-tool patterns • 92

Functionality • 93

MCP ��� 97

What is MCP? • 97

Adding an MCP server as a tool • 97

Summary ��� 99

Chapter 5: Memory and Knowledge � 101

Technical requirements ��� 102

Working memory ��� 103

Managing inputs and responses • 103

Chat conversations • 106

Conversation management with Sessions • 108

Managing large conversation threads • 110

Sliding message window • 110

Message summarization • 110

Long-term memory �� 112

Persistent message logs • 112

Structured memory recall • 114

Training knowledge �� 118

Retrieved knowledge �� 119

Unstructured data • 123

Document ingestion • 125

Retrieval • 125

Using vector stores and FileSearchTool in the Agents SDK • 126

Limitations • 128

Summary �� 129

Table of Contents xi

Chapter 6: Multi-Agent Systems and Handoffs � 131

Technical requirements �� 132

Multi-agent orchestrations ��� 132

Deterministic orchestration • 133

Dynamic orchestration • 136

Handoffs in OpenAI Agents SDK ��� 139

Introduction to handoffs • 141

Multi-agent switching • 143

Customizing handoffs • 146

Handoff prompting • 149

Multi-agent patterns �� 151

Centralized system • 151

Hierarchical system • 152

Decentralized system • 156

Swarm system • 160

Summary ��� 164

Chapter 7: Model and Context Management � 165

Technical requirements ��� 166

Model management ��� 166

Adjusting the underlying model • 166

Adjusting the model settings • 168

Third-party models • 171

Context management ��� 172

Local context • 173

Summary �� 175

Table of Contentsxii

Chapter 8: Agent System Management � 177

Technical requirements ��� 178

Agent visualization �� 178

Guardrails ��� 181

Input guardrails • 182

Output guardrails • 190

Logging, tracing, and observability ��� 193

Custom traces and spans • 195

Grouping multiple traces and spans together • 198

Disabling traces • 202

Agent testing �� 203

End-to-end testing • 203

Unit testing • 207

Summary �� 208

Part 3: Build AI Agents � 211

Chapter 9: Building AI Agents and Agentic Systems � 213

Technical requirements �� 214

Building a customer service employee AI agent �� 214

Setting up the database • 216

Setting up a vector store • 217

Creating a function tool to query data • 219

Creating a vector store search tool • 221

Creating an input guardrail • 221

Creating a retention agent • 222

Creating a customer service agent • 223

Building the runner • 224

Testing the agent • 225

Table of Contents xiii

Orchestrating an automated multi-agent workflow �� 226

Setting up a customer database • 228

Setting up the transcripts JSON • 229

Creating function tools to retrieve data and search the web • 230

Creating the customer research agent • 232

Creating the email creation agent • 233

Orchestrating the workflow • 234

Testing the workflow • 235

Summary ��� 237

Other Books You May Enjoy � 241

Index � 245

Preface

Building Agents with OpenAI Agents SDK comes at a time when there is a major shift in AI and how

we work. The first wave came with ChatGPT, a large language models (LLM) in a consumer

application, which gave everyone powerful new ways to generate and work with natural language.

Now, we are moving into the next phase: AI agents. Unlike traditional software, which is built

around rigid, deterministic rules, such as “if X, then Y,” agents can handle ambiguity, can adapt

to changing goals, and can reason through steps to accomplish tasks. They are not limited to

answering questions; they can plan, orchestrate workflows, retrieve and synthesize information,

use external tools, and even collaborate with one another. In doing so, they are beginning to take

on work that once seemed possible only for humans. This transformation is still in its early days.

OpenAI Agents SDK is at the center of this change. It provides a practical and the best framework

for building, deploying, and managing agents, from simple assistants to complex multi-agent

systems. Just as Microsoft PowerPoint is a platform to build slide deck presentations, OpenAI

Agents SDK is poised to become the way developers and tech enthusiasts build AI agents and

agentic systems.

This book is your guide to mastering that skill. It takes a hands-on, example-based approach. We

start in the beginning by learning the anatomy of an agent, its strengths and weaknesses, and

how OpenAI Agents SDK works. We then deep dive into each of the SDK’s capabilities, such as

tools, memory, knowledge, multi-agent handoffs, and guardrails. We then take everything we’ve

learned and build a full end-to-end practical AI agent solution.

By the end, you won’t just understand AI agents in theory; you’ll have built full, end-to-end agentic

systems with OpenAI Agents SDK. You’ll be equipped not only to answer the question, “What is

an AI agent?”, but also to design and implement AI agents in practice. The best way to learn is by

building, and this book is written to get you building AI agents.

Prefacexvi

The book is structured into three parts:

•	 Part 1, AI Agents, lays the conceptual and practical groundwork for the rest of the book. We

start by defining what an agent is, how it differs from a traditional chatbot or API client,

and why agents have become a compelling pattern for automating work across software,

data, and business processes. We will then build a mental model of an AI agent that you

can use throughout the book: the brain of an agent (the model), the hands and eyes of an

agent (the tooling interface), and the reference textbook (memory and knowledge), all

under explicit constraints and guardrails. We will then learn about the core primitives of

the best framework to build AI agents – OpenAI Agents SDK.

•	 Part 2, OpenAI Agents SDK, is the technical core of the book. Here, we move from “agent

as an idea” to “agent as an engineered system,” using OpenAI Agents SDK as our primary

vehicle. Each chapter deepens one specific capability and the primitives set of OpenAI

Agents SDK. For each component, we discuss the theory and then apply it to examples and

demos as we build practical AI agents and agentic systems. Specifically, we will extend

your agent with tools (from simple functions to hosted tools and agents-as-tools), add

memory and knowledge retrieval, compose multi-agent systems with deliberate handoffs,

and learn how to manage agentic systems.

•	 Part 3, Build AI Agents, is the key part of the book. Here, we will assemble an end-to-

end agentic system using OpenAI Agents SDK, not as isolated features but as a coherent

application. We will take the components introduced earlier (tools, memory and retrieval,

sessions, model and context management, guardrails, multi-agent orchestration, etc.)

and integrate them into production-shaped applications and workflows with clear inputs

and outputs.

Who this book is for
If you are a software developer, consultant, or tech professional eager to harness the power of AI

agents, this book is designed for you. Whether you are a Python developer exploring the latest

in AI frameworks, a business analyst curious about automating workflows, or a productivity

enthusiast looking to build practical AI-driven solutions, this book will give you the skills to turn

ideas into working AI agents and agentic systems.

We assume you have a basic understanding of programming concepts in Python and a general

comfort with technical tools such as APIs, development environments, and cloud-based services.

You do not need prior experience with AI or machine learning to follow along as these concepts

are introduced progressively.

Preface xvii

By the end of this book, you will have both the conceptual grounding and the hands-on experience

to design, implement, and scale AI agents using OpenAI Agents SDK, moving from simple agents

to sophisticated, multi-agent systems capable of real-world impact.

What this book covers
Chapter 1, Introduction to AI Agents, explains what AI agents are and why they represent such a

powerful paradigm for automating tasks. It sets the stage for understanding their role in modern

workflows.

Chapter 2, Introduction to OpenAI Agents SDK, introduces the architecture, core concepts, and

primitives of OpenAI Agents SDK, giving you a foundation to work with agent-based systems.

Chapter 3, Environment Setup and Developing Your First Agent, walks through setting up your

development environment and building a simple agent from scratch, providing a practical first

step into agent development.

Chapter 4, Agent Tools and MCPs, demonstrates how to extend agents with tools, from custom

Python functions to OpenAI-hosted tools, while also covering how agents can interact through

the Model Context Protocol (MCP).

Chapter 5, Memory and Knowledge, shows how to give agents memory and retrieval abilities by

integrating conversation history and vector databases, enabling them to use past context and

external documents effectively.

Chapter 6, Multi-Agent Systems and Handoffs, explores collaboration between agents, including

how they can hand off tasks to specialized sub-agents to solve complex, multi-step problems.

Chapter 7, Model and Context Management, covers techniques for customizing the underlying LLMs

and their settings to fine-tune agent behavior.

Chapter 8, Agent System Management, focuses on operational practices such as monitoring,

observability, guardrails, and policy enforcement to ensure agents run reliably and securely.

Chapter 9, Building AI Agents and Agentic Systems, brings everything together by guiding you through

the construction of complete, real-world agent solutions that combine tools, memory, handoffs,

and system management into cohesive applications.

Prefacexviii

To get the most out of this book
Following along will be easier if you bear the following in mind:

•	 Theory: We will generally start by explaining the theory behind particular concepts and

primitives

•	 Examples: We will illustrate each concept with full end-to-end examples to make sure

you can effectively use all the concepts learned

•	 Projects: At the end of the book, we take everything that we have learned and apply it to

a full end-to-end AI agent and agentic system builds

•	 Think beyond: Reflect on how AI agents and OpenAI Agents SDK can be used to solve

your problems

Here is a list of software/hardware you need to have:

Software/Hardware covered in the book System requirements

Python 3.10 or higher Windows, macOS, or Linux

OpenAI API key

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK. We also have other code bundles from our rich

catalog of books and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781806112012.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X handles. For example, “We then call the

Runner.run_sync function, passing the newly created agent object as well as input_context,

which, in this case, is a question that a customer may ask”

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing
https://packt.link/gbp/9781806112012

Preface xix

A block of code is set as follows:

from agents import Agent, Runner, CodeInterpreterTool

from agents.tool import CodeInterpreter

Instantiate the tool

tool_config = CodeInterpreter(

 container={"type":"auto"},

 type="code_interpreter"

)

codetool = CodeInterpreterTool(tool_config=tool_config)

Bold: Indicates a new term, an important word, or words that you see on the screen, for example,

in menus or dialog boxes. For example: “Typically, you have one agent that controls the workflow

(often called the orchestrator) and a set of agents that are called to fulfill certain tasks (often

called the workers).”

Disclaimer on AI usage
The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of

enhancing the language, brainstorming ideas, refining clarity, and generally aiding within the

book, thereby ensuring a smooth reading experience for readers. It is important to note that the

content itself has been crafted by the authors and edited by a professional publishing team.

 Warnings or important notes appear like this.

Tips and tricks appear like this.

Prefacexx

Get in touch
Feedback from our readers is always welcome!

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

Share your thoughts
Once you’ve read Building Agents with OpenAI Agents SDK, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
https://packt.link/r/1806112000

Preface xxi

Join our Discord and Reddit spaces
You’re not the only one navigating fragmented tools, constant updates, and unclear best

practices. Join a growing community of professionals exchanging insights that don’t make it

into documentation.

Stay informed with updates, discussions, and

behind-the-scenes insights from our authors.

Join our Discord space at https://packt.

link/z8ivB or scan the following QR code:

Connect with peers, share ideas, and discuss

real-world GenAI challenges. Follow us on

Reddit at https://packt.link/0rExL or scan

the following QR code:

https://packt.link/z8ivB
https://packt.link/z8ivB
https://packt.link/0rExL

Prefacexxii

Your Book Comes with Exclusive Perks - Here’s How
to Unlock Them

Enhanced reading experience with our Next-gen Reader:

 Multi-device progress sync: Learn from any device with seamless progress sync.

 Highlighting and notetaking: Turn your reading into lasting knowledge.

 Bookmarking: Revisit your most important learnings anytime.

 Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

Learn smarter using our AI assistant (Beta):

 Summarize it: Summarize key sections or an entire chapter.

 AI code explainers: In the next-gen Packt Reader, click the Explain button above each code

block for AI-powered code explanations.

Unlock this book’s exclusive benefits now
Scan this QR code or go to https://packtpub.com/unlock,

then search this book by name. Ensure it’s the correct

edition.

Note: Keep your purchase invoice ready before you start.

https://packtpub.com/unlock

Preface xxiii

Learn anytime, anywhere:

Access your content offline with DRM-free PDF and ePub versions—compatible with your

favorite e-readers.

Unlock Your Book’s Exclusive Benefits
Your copy of this book comes with the following exclusive benefits:

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few minutes

and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Keep your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help

Prefacexxiv

Step 3
Sign in to your Packt account or create a new one for free. Once you’re logged in, upload your

invoice. It can be in PDF, PNG, or JPG format and must be no larger than 10 MB. Follow the rest

of the instructions on the screen to complete the process.

Step 2
Scan this QR code or go to https://packtpub.com/unlock.

On the page that opens (which will look similar to Figure 0.1 if you’re on desktop), search for this

book by name. Make sure you select the correct edition.

Figure 0.1: Packt unlock landing page on desktop

https://packtpub.com/unlock

Preface xxv

Need help?
If you get stuck and need help, visit https://www.packtpub.

com/unlock-benefits/help for a detailed FAQ on how to

find your invoices and more. The following QR code will take

you to the help page directly:

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
customercare@packt.com

Part 1
AI Agents

Part 1 lays the conceptual and practical groundwork for the rest of the book. We start by defining

what an agent is, how it differs from a traditional chatbot or API client, and why agents have

become a compelling pattern for automating work across software, data, and business processes.

We will then build a mental model of an AI agent that you can use throughout the book: the brain

of an agent (the model), the hands and eyes of an agent (tooling interface), and the reference

textbook (memory and knowledge), all under explicit constraints and guardrails. We will then

learn about the core primitives of the best framework to build AI agents: OpenAI Agents SDK.

This part is deliberately pragmatic. After establishing the “why” and “what,” we get you hands-

on quickly. You’ll install the prerequisites, scaffold a minimal project, and stand up your first

working agent.

This part contains the following chapters:

•	 Chapter 1, Introduction to AI Agents

•	 Chapter 2, Introduction to OpenAI Agents SDK

•	 Chapter 3, Environment Setup and Developing Your First Agent

1
Introduction to AI Agents

AI agents are changing the way we work. Software has typically created deterministic (if X, then Y)

and rigid systems that cannot address ambiguity or adapt to different goals – but this is changing.

With the advancements of large language models (LLMs), intelligent systems are being created

that can independently reason through steps and take actions to complete a goal. These AI agents

are taking a larger share of work previously thought only a human could do, and it’s just beginning.

By the end of this book, you will become a master at creating AI agents through OpenAI Agents

SDK. The best way to learn this is to get your hands dirty and start building AI agent systems

using that framework. Before we do this, however, we need to start at the most basic level, which

is answering the question, “What is an AI agent?”.

This chapter goes through everything you need to know to answer that question and, more

importantly, lays the foundation we’ll build in the rest of the book. We will explain exactly what

an AI agent is and how it differs from traditional systems. This is important as many readers often

confuse AI agents with sophisticated applications, such as chatbots or fraud detection systems.

It’s important to understand how AI agent systems work before we start building them. We will

explore AI agents’ practical applications beyond productivity. Finally, we will go through the

different design patterns and frameworks available when building an AI agent, and understand

why OpenAI Agents SDK is the pragmatic choice for most production systems.

Here is what we will cover in this first chapter:

•	 Overview of the AI agent system and its strengths and weaknesses compared to more

traditional systems

•	 Practical applications of AI agents

Introduction to AI Agents4

•	 How AI agents are built, by understanding their anatomy and different design/framework

patterns used to build them

By the end of this opening chapter, we will have a strong mental blueprint for how every real-

world AI agent is assembled, which will serve as our compass for when we start building our own.

Technical requirements
This chapter will be an overview of AI agents from a theoretical point of view to set a good

foundation before we start building them. As a result, we will not be writing any code or developing

any applications in this chapter. However, to follow along and complete the exercises and projects

discussed throughout the rest of the book, make sure you have the following set up in your

development environment:

•	 Operating system: Windows 10/11, macOS, or Linux-based distribution (Ubuntu

recommended).

•	 Python version: Python 3.8 or later. You can verify your Python version by running python

--version in your terminal or Command Prompt.

•	 OpenAI account: Sign up at https://platform.openai.com/signup.

•	 OpenAI API key: Obtained by creating an account with OpenAI. You will require this to

utilize OpenAI Agents SDK.

•	 Code editor: VS Code, PyCharm, or any IDE/editor you prefer.

Throughout this book, practical examples and the complete code from each chapter will be made

available via the accompanying GitHub repository at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

Overview of AI agents
Before exploring AI agents in depth, we must first establish an intuitive understanding of what an

AI agent actually is, how it fundamentally differs from traditional software, and what advantages

and disadvantages this brings. This is difficult as there are varying definitions that often evolve

with technological advancements. By clearly defining the key concepts upfront – including its

benefits such as intelligent autonomy, reasoning abilities, and adaptive problem-solving – we

can set the stage for understanding its practical applications and building approaches.

https://platform.openai.com/signup
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 1 5

What is an AI agent?
An AI agent is an intelligent system that can operate independently to accomplish a specific goal by

perceiving the world around it and taking action. Key distinguishing features of an AI agent include

its ability to think and reason from a broad and sometimes ambiguous goal, its ability to create

a plan to accomplish that goal, and its ability to autonomously complete that goal using a set of

tools at its disposal that interact with the world.

This is in direct contrast to other conventional software systems that are deterministic (i.e., they

follow a strict set of instructions based on a predefined plan) and cannot reason if situations

outside of that plan are encountered. AI agents, on the other hand, can observe their environment,

reason about what needs to be done, and act upon it in a continuous manner.

AI agents achieve this by combining the intelligence and reasoning abilities of LLMs with actions

through standardized API calls. Let’s explore the concepts and strengths of AI agents through

a simple analogy to cement our understanding and differentiate it from classical software

automation frameworks.

Understanding AI agents with a simple analogy
Imagine you are the head chef of a five-star restaurant, and you need to train two junior chefs,

Carlos and Adam. Carlos is like a conventional automation software system or model, whereas

Adam is like an AI agent. The way you would train these two chefs and the way that these two

chefs operate are completely different.

Carlos requires you to teach him exactly what to do to prepare every dish. If you’re teaching him to

make an omelet, you must teach him how to open the fridge, take an egg, turn on the stove, pour

some oil, crack the egg, and so on. Each step must be meticulously defined and shown to Carlos.

When asked to make an omelet, Carlos performs the task exactly as-is, to perfection.

Adam works a different way, more like a human. Instead of giving him predefined steps, you show

him how to perform actions around the kitchen – this is how you grab ingredients from the fridge,

this is how you operate a stove, these are the basics of gastronomy, and so on. When asked to

make an omelet, Adam relies on his reasoning ability and the set of tools/knowledge he’s been

given to accomplish that task, rather than following predefined steps.

Both Carlos and Adam are amazing chefs but have different strengths and weaknesses. In

particular, Adam can embrace complexity and ambiguity. Because he can reason and is taught

how to perform general actions, he can cook more than just an omelet – he can theoretically cook

all kinds of foods as they all use the same actions.

Introduction to AI Agents6

This acts as the perfect analogy between AI agents and classical automation software/models. In

short, the intelligent autonomy afforded to an AI agent enables it to perform a diverse set of ambiguous

tasks that just cannot be replicated.

Strengths and weaknesses of AI agents versus traditional
systems
The preceding analogy describes the key differences and advantages that AI agents have over other

systems in addition to their ability to embrace complexity. Adam has goal-directed autonomy,

which enables him to cook more than just an omelet; he can make scrambled eggs, poached eggs,

and even sunny-side-up eggs. In fact, Adam can create new/novel creations that he has not been

explicitly trained on as long as his set of actions is sufficient to perform that task. Adam can also

complete tasks in another order if appropriate.

Adam exhibits reasoning, which means he can perform adaptive problem-solving, which enables

him to do the following, which would be impossible for Carlos:

•	 Vary his cooking style to meet customer requests – Adam can cook an omelet more or

less runny because he knows that leaving food on the stovetop for longer will make them

more dry.

•	 If there is an ingredient missing, Adam can compromise and see whether there are any

substitutions that he can make. He can handle real-world ambiguity and thrive on it.

Carlos would find these tasks impossible as he has been taught and can only cook one single

way and cannot reason otherwise. If there are any externalities that prevent him from opening

the fridge or turning on the stove, Carlos cannot proceed and stalls, whereas Adam could adapt.

Note

It’s important to mention that intelligent autonomy comes with the need for safe-

guards. An autonomous agent might make a poor decision if its “brain” (the AI model)

is misinformed. We will later discuss how to guide and constrain agents (through

prompt instructions and guardrails) to ensure their autonomy is exercised respon-

sibly. The key takeaway here is that AI agents bring a level of smart, goal-directed

independence that sets them apart from traditional automated systems.

Chapter 1 7

There are, however, weaknesses with the AI agent model that, for certain use cases, may be so

large and impactful that they are not the best options. Adam’s brain is powered by an LLM, which

is prone to hallucinations, which means the AI agent may hallucinate and perform nonsensical

actions. This can resonate in, for example, Adam creating a steak dish but confidently claiming that

it’s tofu (which could cause awful outcomes for vegetarians). Adam may take novel and unseen

approaches to accomplish the task (reckless improvisation), sometimes to the detriment of its

purpose. For example, he may find that keeping the stove continuously on results in faster cooking

but fails to realize it’s dangerous and may burn the restaurant down. AI agents generally choose

their own path to achieving their objectives, which may not be the most optimal or desired path.

Adam must also take time to reason, which means that he is inherently slower and expends more

energy. In fact, an AI agent can be up to 100 times more resource-intensive and longer than its

conventional software counterpart. Finally, Adam may also struggle with communicating his

reasoning for taking certain actions (lack of explainability), a weakness common in many deep

learning models.

Now that we understand what an AI agent is and its strengths and weaknesses, we can reason

its practical applications over other traditional systems.

Practical applications of AI agents
AI agents are more than just a trendy idea – they are becoming central to how companies are

leveraging AI to solve real problems. In particular, early adopters of AI agents are using them at

all levels of their organizations, from customer-facing roles with AI agents that sell products and

resolve issues to internal productivity such as software development or research.

Productivity gains
The most obvious and immediate motivation for AI agents is improved productivity, primarily

through replacing or augmenting human work that traditional software systems cannot replace

or augment. By handling these tasks autonomously, AI agents free up humans to focus on higher-

level, more strategic work and creativity.

Introduction to AI Agents8

Consider customer support as an example. Traditionally, a customer support center might require

dozens or hundreds of human agents to handle queries. Traditional software systems may replace

this with automated chatbots that serve answers from a tree-like hierarchy of question-answer

combinations, but their impact is limited as they cannot take action and they struggle with

ambiguity. A traditional system may be able to answer How do I reset my password? but struggles

with Can you look at my most recent transaction and tell me where I bought that, and then process a return

for me while sending a confirmation email to my accountant? AI agents, with the right architecture

and tooling, can easily address these queries and can even loop in humans when necessary. In

fact, it is projected that AI will handle 95% of customer service in the near future (https://www.

tidio.com/blog/ai-customer-service-statistics/).

Software development is also a typical function where AI agents are swarming. It is well known

that AI coding assistants such as GitHub Copilot have been proven to help developers complete

tasks 55% faster and help developers stay in the flow, and they’ve reported that they are 60%

less frustrated when coding (https://github.blog/news-insights/research/research-

quantifying-github-copilots-impact-on-developer-productivity-and-happiness). AI

agents take this one step further. There are now several companies creating fully autonomous

AI agents that can resolve errors and build new features in your code base through the entire

development life cycle (understanding user requirements, writing code, testing code, managing

pull requests, updating Jira, and communicating with managers). Examples beyond GitHub

Copilot include Devin and Cursor.

There are also domain-specific AI agents that are meant to improve the productivity of particular

tasks (such as HR, law, etc.) or industries (banking, retail, etc.). For example, in HR, AI agents can

automate candidate screening, predict employee attrition, and personalize onboarding processes.

In the legal sector, firms such as MinterEllison have deployed AI tools such as Lantern to expedite

document review, processing thousands of documents per hour – significantly faster than human

reviewers. In banking, institutions such as JPMorgan Chase utilize AI agents to enhance client

services by automating personalized investment advice and related research.

Overall, AI agents serve as a catalyst for productivity by performing or augmenting human tasks.

https://www.tidio.com/blog/ai-customer-service-statistics/
https://www.tidio.com/blog/ai-customer-service-statistics/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness

Chapter 1 9

Better interactivity
AI agents are fundamentally changing the way we interact with computers. Traditionally, most

interactions followed rigid patterns that had to be performed by experts familiar with that field.

For example, consider a manager working in retail. Analyzing their store sales compared to other

stores over time required a dedicated data analyst who could translate the manager’s request

into a SQL query that could be run against a database. Alternatively, this type of request could

be performed through a higher abstraction of the same task, such as interacting with Power BI

or Excel, but this still requires the manager to be familiar with those tools (and all the related

menus, forms, etc.)

AI agents, however, fully remove this barrier. AI agents receive user requests through natural

language and contain the necessary tooling to perform SQL queries. The LLM can fully translate

the user request into the required SQL query and can also explain the results to the user. In this

way, the manager can directly interact with the data.

This is not only limited to text; AI agents are continuously becoming more multi-modal, being able

to interact with voice and vision. For example, voice-enabled AI agents enable doctors to dictate

notes and automatically write prescriptions that are sent to the patient’s pharmacy. Retailers are

using vision capabilities to audit shelves and automatically order more inventory and instruct

associates to fill those shelves when the shelves are empty.

Overall, AI agents are driving a shift from tools to partners. Instead of requiring users to adapt to

software (learning its interface and entering data in rigid ways), the software adapts to the user,

and the entire learning barrier and its related friction is removed.

New businesses
AI agents are not just improving productivity and interactivity; entire new businesses and strategies

are being built from AI agents. A good analogy is the internet. The internet made certain tasks

faster – for example, writing emails is far faster than sending physical letters through the mail. It

also created entire new business models such as e-commerce, digital marketplaces, online-based

services, and more.

For example, businesses such as Jasper.ai and Copy.ai have emerged, providing AI-agent-driven

platforms specifically designed to autonomously produce marketing content, social media posts,

and sales copy. These AI-driven solutions enable companies to drastically accelerate content

creation, reduce marketing expenses, and scale their messaging efforts far beyond what traditional

approaches could achieve.

Introduction to AI Agents10

Build methodology of AI agents
Now that we understand an AI agent conceptually and its practical applications, we will discuss

the anatomy of an AI agent as well as explain the step-by-step approach to designing and building

them. Understanding this anatomy will help us design and implement agents systematically, so

we can ensure each component is accounted for and functioning properly.

Anatomy of an AI agent
AI agents follow a typical pattern and can be broken down into three fundamental components.

Specifically, the anatomy of an AI agent comprises the following:

•	 Model: This is the brain of the operations. It interprets input, reasons about actions, and

generates outputs. Typically, this is an LLM with system instructions and a control logic

framework that enables it to reason and iterate.

•	 Tooling interface: This is the hands and eyes. It provides the agent with the ability to act,

such as sending emails or searching the web via APIs or local function calls.

•	 Memory and knowledge: This is the reference textbook. It contains information that helps

the AI agent perform its tasks, such as databases, documents, and so on.

Model
All intelligent AI agents are powered by an underlying model that enables them to understand

inputs, create a plan of action, generate action inputs, review action responses, and iterate that

process until its goal is achieved. The core model does not technically need to be an LLM – it

can be any system that can follow the observe, reason, and act tenets we described previously. In

practice, however, this typically is a powerful LLM such as OpenAI’s GPT-4o model or Google

Gemini’s 2.5 Pro model.

The model acts as the brain of the AI agent, which means that the importance of choosing the

right LLM cannot be overstated. There are several factors to consider when determining which

model to use. These trade-offs exist when attempting to use an LLM for any task. They include

the following:

•	 Cost: LLMs vary significantly in their cost, typically expressed as a dollar amount per

number of tokens (or word blocks) processed. Foundational models are a lot cheaper than

specialized fine-tuned heavy-reasoning models.

•	 Latency: LLMs vary in their speed to respond, which is not only based on the LLM’s

architecture but also on where and how the LLM is hosted.

Chapter 1 11

•	 Performance: This factor is certainly the most diverse. Because of the proliferation of

LLMs, there is a wide array of strengths that differ based on the use case. Certain LLMs

are great at coding tasks, while others perform much better at creative exercises. Certain

LLMs are multi-modal – they can input and output not only text but also images, video,

and audio. LLMs also differ in their context window, which determines how much they

can read or write at a time.

•	 Bias: LLMs also differ in their knowledge and leanings, which need to be understood when

determining what model to choose for your AI agent. Many models have knowledge cut-

off dates (i.e., they only “know” about events up to a particular date), which could pose

trouble if we are creating an AI agent that recalls recent events. Additionally, LLMs can have

political or informational leanings that might unintentionally (or sometimes intentionally)

skew their responses. An example is DeepSeek, which has a notable pro-Chinese bias,

according to the Guardian (https://www.theguardian.com/technology/2025/jan/28/
we-tried-out-deepseek-it-works-well-until-we-asked-it-about-tiananmen-

square-and-taiwan).

Note that models used to power AI agents are not purpose-built or trained for each AI agent.

Instead, these are general-purpose pre-trained models that are just given special instructions to

behave like agents. In other words, the underlying model between ChatGPT, a travel planner AI

agent, GitHub Copilot, and a customer service AI agent may all share the same underlying model,

OpenAI GPT-4o. What differs between these applications is not the model but the instructions

provided to the model and how the model interacts with other components.

These “instructions” are provided to the model by defining a system prompt. A system prompt tells

the model how to act and drives its underlying behavior. Most debugging with the performance of

AI agents occurs by adjusting its system prompt to lead to a more desired result. A good analogy is

when you write a system prompt, you are defining the model’s identity and purpose. As a result,

providing accurate and well-nuanced system prompts is very important.

Note

Certain aspects of performance and bias, such as knowledge cut-off dates and po-

litical leanings, can be resolved by tactics such as retrieval augmented generation

(RAG), nuanced prompting, or post-train refinements. These will be covered later.

https://www.theguardian.com/technology/2025/jan/28/we-tried-out-deepseek-it-works-well-until-we-asked-it-about-tiananmen-square-and-taiwan
https://www.theguardian.com/technology/2025/jan/28/we-tried-out-deepseek-it-works-well-until-we-asked-it-about-tiananmen-square-and-taiwan
https://www.theguardian.com/technology/2025/jan/28/we-tried-out-deepseek-it-works-well-until-we-asked-it-about-tiananmen-square-and-taiwan

Introduction to AI Agents12

Control logic framework
Another key aspect of an AI agent is the control logic framework, which is its ability to observe,

reason, and act iteratively until a desired goal is achieved. This loop is not necessarily done by

the model itself; instead, it’s the agentic framework code that forces the model to run this loop.

This is typically incorporated into the AI agent’s model component, which can be summarized

in pseudocode as follows:

Read user's goal and create action plan

For each step in action plan:

 Create action inputs

 Execute action

 Get result

 Add result to memory

 Modify action plan if necessary or if goal not achieved

 If goal is achieved:

 Return output to user

Agentic frameworks differ on the actual approach and there are several variations, but most follow

the preceding structure of high-level planning and execution. Common ones include chain-of-

thought (CoT) and ReAct. In fact, some frameworks even have the agent generate an answer

and then a second pass, where the agent (as a judge) evaluates the first agent’s answer and logic.

Tooling interface
A critical requirement for an AI agent that we previously discussed is its ability to interact with

the outside world, which is called its tooling interface. Normally, an LLM interacts with a user

through text, image, and audio outputs, producing tokens from its vast deep learning neural

network. The outside world refers to the environment beyond it, which typically refers to other

applications such as email, searching the web, or controlling your computer. This enables AI

agents to do stuff and serves as its hands and eyes.

The mechanism of how an AI agent interacts with other applications is by providing the AI agent

with a framework for how and when to execute actions within these applications. For example, the

framework for an AI agent that assists with email tools may include the following actions (again,

in pseudocode):

Action #1: Send an email

 Description: Sends an email to a user

 Parameters: to_email_address, email_subject, email_body

Chapter 1 13

Action #2: List all emails

 Description: Lists all emails, including email_id

 Parameters: search_term (optional)

Action #3: Read an email

 Description: Returns the content of an email

 Parameter: email_id

When an AI agent is created with these tools, its model and control logic framework decides when

to use these actions and determines the correct inputs for these actions.

For example, an AI agent may be given the task of finding all emails related to the coffee expansion

proposal, summarizing them, and sending the summary to the user’s manager. In that case, the

AI agent would first call the List all emails action with the search term coffee expansion

proposal or something similar, use the Read an email action to read them, summarize them

using the LLM, and then use the Send an email action to send the summary.

The act of registering these tools with the AI agent differs based on the agentic framework that

is being used. In all cases, however, the AI agent can do the following:

•	 Show an awareness of the existence of these tools – Typically, by automatically adding

the tool names, definitions, and parameters into the system prompt of the model.

•	 Execute the tool actions – Typically done automatically through the agentic framework

that is chosen. These can either be in the form of function calls on the client machine

(i.e., the machine that runs the AI agent also contains the logic of the tool actions) or API

calls on a server-side machine (a server contains the logic of the tool actions and the AI

agent simply makes calls to the server to perform those actions).

•	 Receive output from tool actions and pass it to the model – Again, this is typically done

automatically through the agentic framework that is chosen.

•	 We defined AI agents earlier as being able to interact with the outside world iteratively

to achieve a goal. Inherently, this means that the tooling interface (i.e., how the AI agent

interacts with the outside world) is a critical component. Because of this, the act of

writing tools (writing the logic, providing detailed instructions and input parameters,

registering them to AI agents, determining the right selection and granularity of actions,

error handling, how to expose them to AI agents, etc.) is a key module in the book, for

which an entire chapter is dedicated.

Introduction to AI Agents14

Memory and knowledge
Recall that we referred to AI agents as intelligent systems.

Memory and knowledge with respect to AI agents are separate but related concepts. The purpose

of both is to provide the relevant context to the model in light of the user’s overall request. This

improves the AI agent’s intelligence and effectiveness. Let’s talk about each concept and how it’s

used mechanically to provide more context to the AI agent.

Memory refers to the AI agent remembering relevant information from current and previous interactions

with the user. There are typically two types of memory, as discussed in the following subsections.

Working memory
Working memory is the information stored in the interaction history in the current sessions of the

AI agent. It’s best to think about this in a traditional chat context. Let’s assume you ask ChatGPT

How hot is the sun? and it replies with its answer. Your next message, in the same conversation, is

How big is it?. ChatGPT is intelligent enough to understand that your subsequent request is related

to the sun because it has your previous interactions/chats in its working history.

Mechanically, recent chats are retained in the prompt that is sent to the model so that the LLM

can always refer back and understand the context of the user’s request. This is why you can ask

follow-up questions and these chat-based systems can respond to them correctly. Note that it is

also very common for working memory to be injected into the system instructions.

Working memory has a limit. For example, GPT-4o might handle 128K tokens only, and beyond

that, earlier messages drop out new ones are added. Strategies such as context windows or

sliding windows are used to keep the most relevant recent information, depending on the agentic

framework being used.

Long-term memory
Long-term memory is information stored from the interaction history of previous sessions of the

AI agent. This enables an AI agent to go from a classically stateless experience (where each request

is handled independently of prior interactions) to a stateful experience (each request is colored

by information retrieved from previous interactions). AI agents that are deemed to be intelligent

from a consumer point of view typically have some implementation of long-term memory. For

example, consider an AI agent that helps you write emails.

Chapter 1 15

Mechanically, this is done by the AI agent storing information from interactions in a database,

which it can then read later, both of which can be done through a tool interaction. For example,

the AI agent may have the following tooling, which enables it to store and recall memories:

Action #1: Store information

 Description: Stores important information about the user

 Parameters: information

Action #2: Read information

 Description: Retrieves important information about the user

The implementation of memory and knowledge differ based on the agentic framework and the

model chosen. In most circumstances, working memory and training knowledge are typical –

no extra functionality is required to enable these components. Long-term memory or relevant

knowledge, however, does require dedicated tooling, which can increase the complexity of AI

agents. These aspects will be discussed in a dedicated chapter.

Knowledge refers to the AI agent recalling relevant information from a stored knowledge base.

Unlike memory, the information that is recalled is not generated from previous interactions with

the user but, instead, from sources of knowledge. These include documents, databases, files,

text corpus, and so on. There are typically two types of knowledge. as discussed in the following

subsections.

Training knowledge
Training knowledge refers to information that is inherently stored in the model through its

training data. For example, all LLMs can easily answer the question How big is the sun? as the

information to answer that question exists in the corpus of text on which the LLM was trained.

This is also referred to as general knowledge. It’s the “baked-in” knowledge that an LLM has

consequent to how it was trained.

An LLM’s training knowledge is often its source of greatest benefit – being able to recall terabytes

of useful general knowledge in a few seconds and adapt it to the user’s request is powerful. From

an AI agent’s point of view, however, this is not that helpful. An AI agent is typically not meant to

recall general knowledge; an LLM connected to a chat interaction can serve that purpose much

better. In addition, an LLM cannot recall information past its training knowledge cut-off date,

nor can it recall information that is not publicly available – two elements that are needed to build

effective and impactful AI agents. In fact, we generally purposely instruct the model to ignore

any of its training knowledge when generating a response.

Introduction to AI Agents16

Instead, an AI agent should be able to retrieve specific contextual information relevant to the

user’s request in real time. This is where the other type of knowledge is helpful.

Retrieved knowledge
Retrieved knowledge refers to information that is retrieved in real time from a knowledge store

based on the user’s request. Unlike training knowledge, which is static and fixed at the time the

model was trained, retrieved knowledge is dynamic and adaptable. The knowledge store can be

documents, databases, and more. The important factor here is that only the relevant information

based on the user’s context is retrieved and added to the model during the AI agent runtime.

Mechanically, this is achieved through tooling similar to long-term memory. The tooling enables

the AI agent with retrieval mechanisms such as a vector database (using the RAG pattern),

structured APIs, file repository searches such as SharePoint or Google Drive, and web search. The

AI agent uses the user’s input to search these sources for relevant documents or records, which

are then supplied as context to the model for response generation.

There are many benefits to integrating retrieved knowledge into an AI agent. In particular, an AI

agent can do the following:

•	 Answer questions with up-to-date or proprietary content

•	 Provide citations or references for traceability (whereas it’s extremely difficult for an LLM

to provide a source with its trained knowledge)

This type of relevant knowledge is crucial for making AI agents useful and impactful. Consider

an AI agent that serves as the HR role for an organization. The only way it can answer questions

about the organization’s vacation policy, benefits, sick time, and so on is by a method of knowledge

retrieval. A sales AI agent may search through a company’s customer relationship management

(CRM) system to find notes on a customer the user is asking about.

Now that we understand the anatomy of an AI agent, we can distinguish between different design

and implementation patterns in terms of how they tackle the model, the tooling interface, and

the memory and knowledge components.

Design patterns
All AI agent design patterns contain the core three components but have variations in how they

implement the components. In particular, they differ based on how they control the control logic

framework (which we discussed earlier) and its tooling sophistication. These include ReAct, CoT,

planner-executor, and hierarchical/multi-agent.

Chapter 1 17

CoT
CoT simply encourages the model to produce a step-by-step reasoning trace before generating

a final answer. A literal interpretation of it would be to tell someone to think about a problem,

create a plan on how they are going to solve it, and then take the steps to solve it. One limitation

of CoT is that it’s unable to take action and, more importantly, unable to adapt its plan based on

the results of actions.

ReAct (Reasoning + Acting)
ReAct is a pattern that we mentioned and described in pseudocode earlier. This design pattern

enforces an AI agent to iteratively reason about the problem and choose a tool or action to take,

feeding the result back into the continuous loop until its goal is achieved. The difference between

ReAct and CoT is in its ability to act and then adjust its plan based on the results of that action.

This is best for real-world agents that need to reason and interact with tools to solve complex

tasks. This pattern is most often the go-to for most traditional AI agents.

Planner-execution
The planner-execution pattern separates the system performing the planning from the system

performing the execution. An agent first generates a high-level plan and then another agent

(or multiple agents) executes each task in that plan. This pattern works well for very long-term

complex tasks or tasks that can easily be modularized and delegated to sub-agents.

Hierarchical/multi-agent
A hierarchical/multi-agent pattern divides tasks among multiple specialized agents that are

experts in that particular domain or task. This pattern can also perform work in a distributed

nature, meaning that the system can finish tasks simultaneously rather than sequentially. This

system is akin to a normal company, which contains a manager (a CEO) who delegates tasks to

specialized workers with their own domain (CMO, COO, CFO, etc.).

For example, if we build an AI agent that resolves customer complaints, there may be an agent

that receives the complaint and produces an action plan, and then specialized agents to perform

those tasks, each with their own model, tooling infrastructure, and memory and knowledge (such

as a customer agent that can look up customer information, a compliance agent that reviews

policies, and a response agent that drafts a reply to the customer).

Introduction to AI Agents18

In addition to the design patterns, companies have built different frameworks to develop and

deploy AI agents, which differ based on the design pattern used and based on its feature set. These

include OpenAI Agents SDK, LangChain, LangGraph, AutoGen, AutoGPT, and Crew AI.

Overall, OpenAI Agents SDK stands out because of its minimalism and flexibility. It contains a

powerful agnostic architecture that can combine both powerful OpenAI components (such as web

search or computer use) and custom-made tooling. It has very useful integrated tracing, guardrails,

and other enterprise-ready security and observability features that other frameworks do not have.

Finally, it’s an open source project that continues to receive lots of focus and growth – an example

is that it added the Model Context Protocol (MCP) integration weeks after the module’s release.

Summary
In this chapter, we learned about AI agents, their practical applications, and their build

methodology.

AI agents are intelligent systems capable of independently achieving goals by reasoning, planning,

and interacting with the world through tools. Unlike traditional automation systems that require

rigid, predefined instructions, AI agents can handle ambiguity and dynamically adjust their steps

and actions based on the overall goal.

AI agents help organizations work faster by augmenting or replacing work traditionally done by

humans. They also enable individuals to directly interact with tools and data without friction.

Finally, organizations are creating entirely new businesses by leveraging the AI agent architecture.

The core anatomy of an AI agent consists of the following: the model, the tooling interface, and

its memory and knowledge component. Design patterns guide how these components work

together. For instance, ReAct allows agents to reason and adapt with each action step, while multi-

agent systems distribute tasks across specialized sub-agents for efficiency. Various frameworks

implement these concepts differently.

Note

These patterns are not mutually exclusive. In fact, most real-world agents, espe-

cially those built with the frameworks briefly discussed next, tend to blend these

approaches depending on the complexity of the task and the tools available. The

OpenAI Agents SDK framework, for example, combined ReAct and hierarchical/

multi-agent patterns.

Chapter 1 19

Among these frameworks, OpenAI Agents SDK stands out for its minimal, extensible architecture,

built-in observability, and enterprise-grade features, making it a robust choice for building

production-grade AI agents.

In the next chapter, we’ll take a deep dive into the OpenAI Agents SDK framework.

Unlock this book’s exclusive benefits now
Scan this QR code or go to https://packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you start.

https://packtpub.com/unlock

2
Introduction to OpenAI
Agents SDK

An SDK, or Software Development Kit, is a curated collection of libraries, tools, and documentation

that lets developers stand on the shoulders of someone else’s hard work. I really like this (cheeky)

definition, as it states in plain terms what every developer wants with an SDK: to write fewer

lines of code. Good SDKs remove the drudgery of wiring, configuration, and boilerplate so that

developers can focus on what makes their application unique.

OpenAI Agents SDK is used to build AI agents and is beautiful in its simplicity. Instead of confronting

you with custom configuration languages or labyrinthine class hierarchies, it ships a handful of

clear-cut primitives—agents, runners, tools, handoffs, guardrails, and tracing—implemented in

idiomatic Python. With those six building blocks (you could even call them LEGO blocks), you

can spin up a single-agent or multi-agent prototype within minutes.

Here is what you will learn as part of this second chapter:

•	 Design principles of OpenAI Agents SDK, including minimal abstraction and frameworks

for multi-agent orchestration—Pythonic, flexible, and extensible

•	 Core primitives that make up the SDK, with detailed examples of each primitive and

how they are used

By the time you finish this chapter, you will not only know what each primitive does but also why

the SDK’s minimalist architecture is a pragmatic launchpad for building—quickly and reliably—

the agentic systems that the rest of this book will guide you through.

Introduction to OpenAI Agents SDK22

Technical requirements
Throughout this book, practical examples and the complete code from each chapter will be made

available via the accompanying GitHub repository at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

Design features of OpenAI Agents SDK
OpenAI Agents SDK was designed with a few key principles in mind, aimed at balancing ease of

use with flexibility for developers. Understanding these design choices will help clarify why the

SDK works the way it does (and how it differs from other solutions).

Framework for building AI agents
At a high level, OpenAI Agents SDK is used to build AI agents in the same way web frameworks

(such as Django, Ruby on Rails, etc.) are used to build websites. These frameworks abstract the

low-level parts of AI agent development and orchestration. This enables developers to focus on

the higher-level impactful logic and deploy an agent as fast as possible without needing to worry

about scaffolding.

With the SDK, we can create an agent with a few lines of Python code:

agent = Agent(name="Assistant", instructions="You are an AI agent",

 model="gpt-4o")

result = Runner.run_sync(agent, "Tell me a joke")

print(result.final_output)

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 2 23

This example instantiates a basic AI agent with the OpenAI GPT-4o model and with some basic

system instructions. The control logic framework that enables the agent to think iteratively is

already embedded within the agent itself as a direct result of the framework. We then run the

agent on a user query and print the output from the model.

Without the SDK, this would notably take thousands of lines of code to orchestrate, not to mention

the additional thousands of lines of code to create a tracing and logging system that you get

automatically with OpenAI Agents SDK.

OpenAI Agents SDK is engineered to address the inherent challenges in constructing LLM-driven

processes that require more than just text generation. These challenges include enabling models

to reason through multi-step problems, interact with external data sources and APIs (tool use),

and coordinate actions among multiple AI entities.

Multi-agent orchestration
As a subset, this framework also enables developers to build multi-agent solutions. In fact, this

was the original purpose of the framework’s predecessor, Swarm (the idea being you can originate

a series of agents in a swarm-like fashion to complete a task). The idea here is that for specific

tasks, you can’t have one agent do everything. Instead, you have a team of agents, each specialized

in a particular task, that hand off the delegation to each other when necessary.

Note

At this point, we are introducing code as a way to understand the simplicity and ease

of use of implementing the SDK. To actually run the code would require installing

and importing the necessary libraries, which we will go through in detail in the

next chapter.

Introduction to OpenAI Agents SDK24

Imagine a customer-support workflow:

Figure 2.1: A customer support workflow

Let’s break down and discuss the agentic workflow:

•	 First responder agent: Answers the calls, understands the issue, performs simple FAQ

requests, and hands off to other agents as needed

•	 Account agent: Can look up customer orders and status

•	 Technical agent: Can fix user authentication bugs and set up new connection lines for

the customer

•	 Escalation agent: Loops in a human as a last possible resort

Each agent focuses on its domain, yet to the end user, the experience feels like a single, coherent

conversation. All the context-passing, role-switching, and error-handling happen inside the SDK’s

orchestration layer (done with a primitive called handoffs). You configure handoff routes once

and let the framework do the choreography. This can be done with a few lines of code:

account_agent = Agent(name="Account agent")

technical_agent = Agent(name="Technical agent")

escalation_agent = Agent(name="Escalation agent")

first_responder_agent = Agent(

 name="First Responder Agent",

 handoffs=[account_agent, technical_agent, escalation_agent]

)

Chapter 2 25

Minimal abstraction
One of the guiding philosophies behind OpenAI Agents SDK is “few enough primitives to make

it quick to learn.” Rather than introducing layers upon layers of new classes, the SDK gives us

a short, memorable vocabulary. Realistically, if you can remember the core primitives and how

they work, then you’ve already grasped 80% of the framework.

These primitives include: agents, runner, tools, handoffs, guardrails, and tracing. We will deep

dive into each of these frameworks in the next section, and the structure of this book purposely

mimics these primitives—as going through each one is the best way to learn the framework.

That is essentially it. There is no hidden meta-language and no opaque runtime generating code

you cannot see. You wire an agent together with plain Python, decorate a few functions with @

function_tool, and click run. This is important as it provides a fast-onboarding experience: most

developers can skim the docs or a sample notebook over lunch and build a working prototype

by the afternoon.

This SDK is more like a lightweight library than a sprawling framework, but this characteristic

does have some trade-offs. Unlike some other comprehensive frameworks such as LangChain, the

OpenAI Agents SDK does not itself ship with hundreds of turnkey integrations such as document

loaders or memory stores; these concepts instead need to be self-developed by the user.

Pythonic, extensible, and open sourced
The OpenAI Agents SDK is built in and speaks fluent Python. There are no YAML manifests to

wrestle with, no proprietary scopes to memorize, and no metaprogramming magic hiding real

work. An agent is just a Python object and a tool is an ordinary Python function with a special

decorator. You orchestrate them with the same Python language constructs you already use every

day. This makes it extremely useful and simple for Python developers, and shares similarities

with other loved minimalist libraries such as Flask and Pydantic.

OpenAI Agents SDK is “ready to deploy” with default constructs but is also deliberately extensible.

Any particular construct can be hot-swapped with your own component:

•	 The model used in the agent object can be swapped for any LLM, such as an on-premise

LLAMA model (provided it complies with the Chat Completions standard, which is a

standard protocol developed by OpenAI when interacting with foundational LLMs; we

will discuss this in detail in Chapter 10). We have discussed before that this framework is

completely model agnostic.

Introduction to OpenAI Agents SDK26

•	 The tools in this framework are just Python functions with added decorators, meaning

they can easily be swapped at any time for another Python function or a hosted API call,

including connecting to MCP servers.

•	 The tracing is, by default, sent to the Traces dashboard within OpenAI but can be hooked

up to any telemetry tool such as Azure Monitor Logs or DataDog.

Technically, even the agent-execution loop is modular. The high-level runner handles retries, step

limits, and concurrent calls, but advanced users can bypass it and drive lower-level primitives

directly inside an existing event loop or task queue.

For example, rather than calling Runner.run_sync(agent, input), an advanced user can manually

step through the agent’s execution logic using the agent.run_step(...) method or control the

loop using agent.get_initial_state() and agent.step(...). This is particularly useful in

environments where you need to interleave agent execution with other async operations, such as

within a FastAPI route, allowing for full control over timing, concurrency, or resource management.

Finally, the SDK is open sourced, which means this framework benefits from complete transparency

and an ever-growing list of developers who are continually improving the framework and making

it more resilient.

Overall, OpenAI Agents SDK provides a streamlined, Pythonic framework specifically designed

to simplify and accelerate the creation and orchestration of sophisticated AI agents. By offering

minimal yet powerful abstractions (agents, runners, tools, handoffs, guardrails, and tracing), the

SDK empowers developers to quickly build complex, multi-agent solutions without wrestling with

excessive boilerplate or hidden configurations. Its extensibility and compatibility with existing

Python constructs enable both rapid deployment and deep customization when creating AI agents.

Core primitives
As we mentioned before, OpenAI Agents SDK introduces a handful of core concepts (normally

called primitives) that we can use to build agent systems. These are the building blocks for any

agent-driven application using the SDK.

To understand what primitives are, let’s say you’re designing a robot assistant to help manage a

smart home. The assistant should be able to turn off lights, adjust the thermostat, respond to voice

commands, and notify you if a window is left open. Instead of building everything from scratch,

the SDK gives you a small set of foundational pieces: one for defining what the agent knows (state),

one for what it can do (tools), one for how it thinks (policy), and so on. These are the primitives.

You combine them like assembling distinct parts of a machine to create a functioning agent.

Chapter 2 27

Think of primitives as LEGO bricks in a LEGO set. They’re the smallest standard pieces you use

to build anything. The SDK might later include prebuilt recipes (like a LEGO instruction manual),

but the bricks themselves are the primitives.

Agent
The agent primitive is the most fundamental concept of OpenAI Agents SDK. It essentially serves as

a highly configurable wrapper around an LLM to make it “agentic” (i.e., providing it with a persona

or system instructions, a tooling interface, and other settings necessary for it to autonomously make

decisions and pursue a goal). When an agent is instantiated with the agent primitive, it can have

the following configuration:

•	 Name: The name of the agent, typically only used for identification purposes

•	 Instructions: These are identical to the system prompt that we discussed in the previous

chapter; they provide the guidelines to the LLM on its role, objectives, behaviors, and

personas

•	 Model: The underlying LLM that powers the agent’s intelligence

•	 Tools: A list of tools that the agent can call to get answers

•	 Handoffs: A list of other agents to whom the agent can delegate tasks

•	 Here is an example of an instantiation of an agent:

Customer_service_agent = Agent(

 name="Customer Service Agent",

 model="gpt-4o",

 instructions="""

 You are an AI agent that helps resolve customer issues in a
positive cheerful manner.

 """,

 tools=[get_account_information, refund_customer_payment,

 track_customer_order],

)

Note

The Agent class can also take in other useful parameters such as guardrails, output

type, and many more. These will be covered in subsequent chapters.

Introduction to OpenAI Agents SDK28

Unsurprisingly, most of these components match the anatomy of an AI agent that we discussed in

the previous chapter. This configurability is what enables developers to quickly spin up specialized

agents, tailored to a specific role or task within a larger application.

This agent can either respond with natural language or call one of the tools it’s been given. It’s

worth mentioning that this SDK provides a single Agent class, unlike some frameworks that have

different classes for each agent type. Here, the agent behavior simply depends on the preceding

configurations, nothing else.

Runner
This primitive is the engine behind an agent. In the previous chapter, we discussed that a key

element in a successful agentic application is its ability to iteratively and autonomously solve a

problem (i.e., it can make decisions and vary based on further inputs it receives to achieve a goal).

This agent loop functionality is baked into this primitive. The Runner (sometimes called the Agent

Loop) is the cyclical process of interacting with the LLM, managing tool calls, determining what

it should do next, and repeating the process.

Recall that we generalized this set of actions in the following pseudocode:

Read user's goal and create action plan

For each step in action plan:

 Create action inputs

 Execute action

 Get result

 Add result to memory

 Modify action plan if necessary or if goal not achieved

 If goal is achieved:

 Return output to user

By automating this core logic, the agent loop significantly simplifies the developer’s task. It

abstracts away the low-level orchestration of LLM interactions and tool use, allowing developers to

concentrate on defining the agent’s high-level behavior through instructions and the capabilities

it needs via tools, rather than getting bogged down in the mechanics of the execution cycle.

Managing this reasoning loop was historically one of the trickiest parts of building agentic AI

(developers had to capture the model’s chain of thought and implement the loop logic themselves).

To call the runner primitive, we can simply call the run method within the Runner class:

result = await Runner.run(agent, "My order number is XYZ - help me figure
out where my order is")

Chapter 2 29

Tools
The tool primitive is a core concept within OpenAI Agents SDK and is truly “well deployed” in

terms of simplicity. In my opinion, it is one of the most “beautiful” aspects of this SDK. Any Python

function can be turned into a tool by adding a specific tool decorator. This decorator enables

the agent’s LLM to understand the tool implicitly through its name, docstring, and arguments

automatically. If the agent’s LLM decides to invoke that tool, the LLM will automatically create

the necessary arguments/schema needed to call it.

For example, we can create a Python function that returns the status of an order given an order

ID and add it as a tool with the related decorator. This decorator will parse the docstring and

arguments of the function automatically and provide them as system instructions to the LLM

so that the agent knows what tools it has, what it can do, and what input arguments to provide.

Here is the code to create a tool:

Customer_service_agent = Agent(

 instructions="""

 You are an AI agent that helps resolve customer issues in a
positive cheerful manner.

 """,

 tools=[get_order_status],

)

@function_tool

def get_order_status(order_id: str) -> str:

 """Gets the order status based on order_id

 Args:

 order_id: the order_id of the order

 """

 # API call to get order status

 return order_status

Note

Runner.run() has a useful argument called max_turns that caps how many cycles

the agent may take. By bounding the loop, max_turns acts as a safety valve against

endless spins caused by a bad configuration or an unsolvable task. We will go through

this in detail in subsequent chapters.

Introduction to OpenAI Agents SDK30

Note that OpenAI Agents SDK also enables developers to instantiate other types of tools in addition

to user-defined functions—hosted tools and agents as tools:

•	 Hosted tools: These are built-in tools specifically provided by and hosted in OpenAI. They

include common tools that you may want your agent to have, such as the ability to search

the web, search through files, generate an image, and so on. They also include the ability to

connect to a local computer’s shell/terminal or functionality via a hosted Model Context

Protocol (MCP) server.

•	 Agents as tools: These are agents that you have previously instantiated that are then

converted into tools. This, however, is rare in practice as calling agents are typically

achieved through handoffs where they are more like context passing.

Handoff
The handoff primitive controls the mechanism by which agents delegate or transfer control to

other agents. This enables multi-agent orchestrations and was one of the bedrock features of the

SDK’s predecessor, Swarm. Agents can be specialized for specific tasks, and handoffs allow you

to have a system of specialized agents (each with its own persona and tools) to address a goal

rather than one agent that controls everything.

Imagine you are creating an agent that creates research reports. Agent A specializes in outlining a

research plan. It passes that plan to Agent B, which scours the web, distills the findings, and then

hands the summary to Agent C, which is specialized to take in findings and create a final report

based on desired specs. The Agents SDK manages each handoff smoothly. This architecture can

easily be created with this primitive in the following way:

research_plan_agent = Agent(name="Research plan agent")

web_search_agent = Agent(name="Web search agent")

final_report_agent = Agent(name="Final report agent")

research_report_agent = Agent(

 name="Research report agent",

 handoffs=[research_plan_agent, web_search_agent, final_report_agent]

)

What’s the difference between an agent handoff versus a tool calling?

•	 Transfer of context: During a handoff, the SDK transfers the necessary context, such

as the conversation history (instead of pre-defined rigid arguments), to the next agent,

letting the work proceed without interruption.

Chapter 2 31

•	 Transfer of control: Handoffs put another “driver” in charge of the overall goal rather

than “outsourcing” a particular sub-task. The agent that is “invoked” can call its own

tools and then hand off to another agent as desired.

Guardrails
Guardrails are a primitive in the SDK that serve as safety mechanisms designed to perform

validations on both the user input and agent output. They are instantiated in the same way as a

tool (e.g., with a specified decorator on a custom Python function) and are triggered based on your

defined logic. For example, we can set up a guardrail that ensures the user is asking our customer

service agent about customer service issues and not something random.

@input_guardrail

async def input_guardrail(

 ctx: RunContextWrapper[None], agent: Agent,

 input: str | list[TResponseInputItem]

) -> GuardrailFunctionOutput:

 # Logic to determine if input is related to a customer service query

 if is_customer_service_query:

 return GuardrailFunctionOutput(

 output_info = "This is a customer query question",

 tripwire_triggered = False,

)

 else:

 return GuardrailFunctionOutput(

 output_info = "This is NOT a customer query question",

 tripwire_triggered = True,

)

If the guardrail fails any validation, a “tripwire” is triggered, and a specific error type is raised in

Python. This error can be handled in whatever way is desired. For example, you may want the

error to trigger a message to the user to let them know that this is not a valid use of the agent, or

to purposely halt any further execution and return an error code.

try:

 await Runner.run(agent, "What is the meaning of the universe?")

 except InputGuardrailTripwireTriggered:

 print("Please enter a customer service related inquiry, not a
random question")

Introduction to OpenAI Agents SDK32

The concept of guardrails in AI agents is important yet barely discussed. For example, you may

want to run the preceding guardrail as executing any agents or tools may be computationally

or financially expensive. Any autonomous system that is not deterministic needs guardrails to

ensure proper functioning, and this primitive makes it simple for developers to implement this

mechanism.

Tracing
The tracing primitive allows developers to observe and debug the behavior of their agent

systems by capturing and recording detailed execution flows during a run. Tracing acts like a

flight data recorder for your agent’s reasoning loop. This includes every decision made by the

agent, tool invocations, intermediate messages, and handoffs between agents. Without tracing,

understanding how and why an agent came to a particular result can be extremely difficult,

especially in complex or multi-agent workflows.

The SDK provides a built-in tracing utility that can be used manually, but more commonly, tracing

is enabled automatically through the SDK’s integrated tracing system. This system can persist

traces locally or send them to a remote tracing backend such as OpenAI’s built-in UI or your own

custom observability setup.

Let’s look at a simple example. Imagine we want to debug the behavior of our customer service

agent when it receives a user request:

From agents import Runner, enable_tracing

await Runner.run(agent, "Please cancel my last order.")

Once tracing is enabled, the SDK captures and logs the following:

•	 The initial user input and system instructions

•	 The model’s internal reasoning (thoughts)

Note

Guardrails usually take the form of decorated Python functions that embed the

validation rules. These can be applied to either the initial input from the user or the

output to the user. However, those functions can themselves call on another agent to

inspect the candidate input or output and decide whether it meets the specified cri-

teria. This means not only can you have agents as tools but also agents as guardrails.

Chapter 2 33

•	 Any tool calls made (with arguments and outputs)

•	 Any handoffs triggered (with full context)

•	 Final response returned to the user

These can all be viewed in the OpenAI Traces UI or your own preferred UI, such as DataDog:

Figure 2.2: Capturing and recording detailed execution flows through tracing

Summary
In this chapter, we conducted a deep dive into OpenAI Agents SDK and what makes it special. We

saw how its minimalist abstraction philosophy strips away boilerplate, letting plain Python do

the talking, while still being powerful enough to create sophisticated AI agents and multi-agent

solutions. We also saw how it was completely open sourced, inviting community scrutiny and

enabling tons of extensions.

Note

Tracing is especially powerful when paired with guardrails. For example, when a

guardrail tripwire is triggered, tracing allows you to capture exactly what input

caused the issue and what steps were taken up to that point. This makes it much

easier to tune your agents or validate business logic in sensitive applications.

Introduction to OpenAI Agents SDK34

We then looked at the core primitives that make up the SDK. In particular, we focused on the

following:

•	 Agent: A thin wrapper that turns an LLM into an autonomous agent. It carries a name,

system instructions, an optional tool belt, and a list of peer agents for potential handoffs.

•	 Runner: The execution engine that drives an agent’s iterative reasoning loop, handles

retries, and enforces safety limits to prevent infinite spins.

•	 Tools: Ordinary Python functions (or hosted APIs/agents) decorated so the model can

discover their purpose, construct valid arguments, and invoke them exactly when needed.

•	 Handoffs: The orchestration mechanism that lets an agent delegate control (and the

full conversational context) to another agent, enabling elegant multi-agent workflows.

•	 Guardrails: Policy checks that wrap every step of the loop, ensuring outputs, tool calls,

and handoffs stay within business and compliance boundaries.

•	 Tracing: Automatic, structured logs of every prompt, response, and tool invocation—

essential for debugging, observability, and post-mortem analysis.

Armed with these LEGO-brick primitives, we can quickly stand up useful agents in minutes with

a few lines of code. In the next chapter, we will set up our environment and create our first agent,

putting all these concepts into practice.

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/8Oz6Y or scan the QR code below.

https://packt.link/8Oz6Y

3
Environment Setup and
Developing Your First Agent

It’s time. We can start getting our hands dirty and start building our first AI agent. Although

OpenAI Agents SDK is relatively straightforward, we first need to make sure our environment

is properly configured and that we understand some basic Python concepts relevant to the SDK.

A functioning environment is the launchpad for everything else in this book, from writing and

running agents to testing tools, debugging traces, and orchestrating multi-agent workflows.

Here is what you will learn as part of this chapter:

•	 Environment setup: We will install Python, set up a virtual environment, install openai-

agents SDK, and securely configure your OpenAI API key. We will also verify that your

environment is ready by running a test script.

•	 Development prerequisites: The SDK is built around essential Python concepts that we

need to be aware of, including type hints, docstring literals, decorators, asynchronous

programming (async/await), and the Pydantic library for structured data validation.

These are essential when we build tools and interact with data between agents.

•	 Building your first AI agent: With the setup complete, we will create our first real agent,

which will be a customer service assistant, and then progressively enhance it. We will add

a tool to handle order status lookups, and then introduce a handoff to a specialized agent

for customer retention. This section puts the full development loop into action, covering

the internals of the control logic framework we discussed previously.

Environment Setup and Developing Your First Agent36

In this chapter, we start coding. By the end of this chapter, you will have a fully functional SDK

environment, a basic understanding of the Python concepts that the SDK relies on, and a real

working AI agent that can take inputs, call tools, and hand off control to other agents. Let’s get

right into it.

Technical requirements
Throughout this book, practical examples and complete code from each chapter will be made

available via the accompanying GitHub repository at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

Environment setup
The first step in using OpenAI Agents SDK is successfully setting up your environment, which

includes installing the SDK and configuring your system to be able to run it. We will cover

prerequisites, how to set up a project with a virtual environment, and how to install the SDK

on both Windows and macOS. We will also need to obtain an OpenAI API key and ensure that it

can be stored and accessed securely. Following these steps will help avoid common installation

issues and will confirm that your environment is ready for development.

Python version and dependencies
As discussed previously, OpenAI Agents SDK is built on Python. This means that your machine

must have Python installed, and specifically Python 3.9 or above. It is also useful to have your

desired instance of Python available in your PATH variable (if you are on Windows) so that the

Python command is available in your PowerShell/Command Prompt.

Note

This chapter walks through setting up your environment for the purposes of running

the SDK locally. If you cannot run the SDK locally (perhaps due to missing prerequi-

sites on your machine) or prefer not to, then most of what we will cover in the book

can be run remotely using Google Colab. If you would like to take this approach,

please skip to the section titled Alternative methods: Google Colab.

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 3 37

To verify the correct installation of Python on your machine, open the appropriate console

environment based on your operating system. This is typically PowerShell or Command Prompt

if you are on Windows 10 or Terminal if you are on Windows 11 or macOS. In the future, this will

simply be referred to as your console.

Open your console and type in the following command. This should return the Python version.

Verify that it is above 3.9. If it is not or the command returns an error, then follow the installation

instructions for your operating system at https://www.python.org/downloads/. Type in this

command:

$ python – version

>>> Python 3.10.6

Project directory, virtual environment, and installations
A clean and organized project structure is the first step toward building a maintainable application.

In the book, each example will be in its own different project folder, organized within a chapter

folder, and all within one central root folder. As our project grows in sophistication throughout this

book, having a dedicated directory will be essential for managing agents, tools, and configuration

files.

Create the required project folder so that it looks like the following configuration. This represents

the folder path from the root directory down to the chapters:

Root

└─ Chapter3

└─ Chapter4

You can either create these folders manually or use the mkdir command in your console terminal.

Because we will be installing the openai-agents library, we must also create a virtual environment

to isolate the SDK from your other Python projects. To create a virtual environment, ensure you

are in your root folder, and enter the following command on your console terminal:

$ python -m venv .venv

This will create a new virtual environment, all housed within your .venv folder. Next, we must

activate the virtual environment so that all our subsequent Python statements run through the

Python interpreter within our virtual environment (along with its installed libraries).

https://www.python.org/downloads/

Environment Setup and Developing Your First Agent38

On macOS, use the following:

source .venv/bin/activate

On Windows, use this:

.venv/Scripts/activate

After activation, your prompt will typically prepend the environment name (e.g., .venv). This

indicates that any Python packages you install or commands you run will use this isolated

environment. Note that you will need to activate the virtual environment in any new terminal

session before running your code. Whenever this book tells you to activate your virtual environment,

it means run these commands to put your terminal in this isolated environment.

Next, we will use Python’s package manager, pip, to download and install OpenAI Agents SDK

by running the following command in our console terminal:

$ pip install openai-agents

This command will download and install the SDK and all its requirements. You should see the

console log output ending with Successfully installed openai-agents, notifying you that

the library has been installed. At this point, you have Python, the virtual environment, and all

the requisite libraries necessary to start building agents – the next step is to set up API access

with OpenAI.

Registering for OpenAI API and setting up the API key
In order to use OpenAI’s large language models (LLMs), you need an OpenAI platform account

with a positive credit balance and an OpenAI API key. The API key serves as the unique identifier

that links your API requests to your account.

Follow these steps to generate an OpenAI API key:

1.	 Navigate to https://platform.openai.com/ and either sign up for an account or log in

to an existing account. Note that you will need a valid email address.

2.	 Select Settings from the top-right menu and then select Billing from the left menu. Fill

in your payment details and then select Add to credit balance. Type in $10 to add $10 to

your OpenAI API credit balance.

3.	 Next, select API keys from the left menu and select Create new secret key. Give this API

key a name such as OpenAIAgentsSDKKey and select the Default project. Then, select

Create secret key to generate your private OpenAI API key.

https://platform.openai.com/

Chapter 3 39

4.	 At this point, you will see your OpenAI key and a Save your key prompt. Note that this

is the only opportunity you have to see and copy your API key – after this, it cannot be

retrieved ever again from OpenAI. Select the Copy button to copy your API key into your

clipboard and then paste it somewhere on your machine (such as a .txt file) for now.

5.	 The following figure shows the API key management screen in the OpenAI platform

dashboard:

Figure 3.1: API screen in the OpenAI UI

After generating your key, the next step is to secure it. This is critical to protect your account from

unauthorized use.

Note

This API key serves as an authentication layer to your OpenAI account. As such, you

must treat this API key like a password and secure it accordingly. Do not share it or

commit it to any open repositories. Technically, anyone with this API key can act

on your behalf and spend your API credits. It is for this reason that we always use

environment variables to handle the API key rather than writing it explicitly.

Environment Setup and Developing Your First Agent40

Because this API key ultimately grants access to your account, it must be protected even during

local development. The best way to do that is to create a .env file within the root folder of your

project, which will store the API key. Within the .env file, type in the following, replacing it with

the OpenAI API key:

OPENAI_API_KEY="sk-..."

Next, you must install python-dotenv to load environment variables stored in your .env file into

your application. Open a console terminal in your root folder, activate your environment, and

run the following command:

$ pip install python-dotenv

Your completed root directory should look like the following:

Root

└─ .venv

└─ .env

└─ Chapter3

└─ Chapter4

└─ ...

Here is a screenshot of the CLI environment:

Figure 3.2: CLI environment

Chapter 3 41

Verifying the environment setup
Let us now put everything together and verify that we can initialize and run an agent using the

SDK. Create a new folder called Chapter3, create a new file called verify_environment_setup.

py within that directory, and type in the following:

import os

from dotenv import load_dotenv

from agents import Agent, Runner

Load environment variables from the.env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Check to confirm API key is accessible:

if not api_key:

 print("Error: OPENAI_API_KEY not found. Please set it in your.env
file.")

else:

 print("API Key loaded successfully.")

#Create an agent and run it

agent = Agent(name="Echo Agent", instructions="Return the words 'Setup
successful'")

result = Runner.run_sync(agent, "Run setup")

print(result.final_output)

Note

You can always go back to OpenAI and revoke your key if you suspect someone else

has it or if you have accidentally leaked it. Simply go back to your OpenAI account,

go to API keys, and select Revoke near the API key that you would like to deactivate.

Environment Setup and Developing Your First Agent42

This program verifies that the two required libraries (python-dotenv and openai-agents) are

installed, that your OpenAI API key environment key is accessible, and that it can be used to create

a basic AI agent. Then, run the Python program, and if you see the following outputs, then your

environment has been successfully set up:

PS C:\Users\hasyh\OneDrive\Documents\1_Projects\30. Packt Publishing\
OpenAI Age nts SDK\Root> python .\Chapter3\verify_environment_setup.py

API Key loaded successfully.

Setup successful

Note that you can run Python files in different ways, depending on your operating system and

your IDE. In VS Code, for example, you can run any Python program by selecting the Play/Debug

button at the top right.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

 The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

packtpub.com/unlock

Chapter 3 43

The most fundamental way to run a Python program, though, is from the console terminal. Activate

your environment and then run the program by typing in Python followed by the location of your

Python file:

python Chapter3\verify_environment_setup.py

You’ve now completed the essential setup steps for building with OpenAI Agents SDK: installing

dependencies, managing your API key securely, and verifying that everything works.

In the next section, we’ll explore an alternative remote environment.

Alternative methods: Google Colab
If you prefer not to set up a local development environment, or you’re working on a device without

administrative privileges, Google Colab provides a convenient and cloud-based alternative. It

allows you to run Python code in a Jupyter Notebook-style environment, with zero setup on your

part.

To use OpenAI Agents SDK in Colab, follow these steps:

1.	 Sign up for an account and start a new notebook at https://colab.research.google.

com/:

Figure 3.3: Google Colab UI

https://colab.research.google.com/
https://colab.research.google.com/

Environment Setup and Developing Your First Agent44

2.	 Python is already installed for you, but you still need to install OpenAI Agents SDK. At the

top of the first code cell, install the SDK by running the following:

!pip install openai-agents

3.	 Set your OpenAI API key by storing it in an environment variable:

import os

os.environ["OPENAI_API_KEY"] = "your-api-key-here"

4.	 You can now import the SDK and begin using it. Follow the instructions in this section

to import all required libraries.

5.	 If your notebook involves multiple files (e.g., loading tools or agents from separate Python

modules), use Colab’s Files pane to upload them.

Running the SDK in Colab supports nearly all of the workflows we cover in this book, with the

added benefit of being easy to share and replicate. While there may be some limitations for

advanced use cases involving local system resources or custom networking, Colab is sufficient

for the majority of agent development scenarios.

In the next section, we’ll explore how to create and structure your first real agent by diving into

the core primitives that power the SDK.

Development prerequisites
To use OpenAI Agents SDK, you need more than just a working installation and environment. The

SDK is designed with specific Pythonic architectural patterns in mind, and being familiar with

these principles will make using the SDK a lot easier. In this section, we will go through a quick

primer on three key Python principles needed to use the SDK.

Note that this is not an exhaustive Python tutorial. Learning Python fundamentals is outside

the scope of this course. This section, though, will align you with the techniques used in the SDK

examples throughout this book.

Python functions architecture
The SDK is used via Python code, so you’ll be writing your own functions and maybe classes

to extend agent capabilities. For example, the Agents SDK allows you to define tools as simple

Python functions that the agent can call. As a result, you should be familiar with how to create

and use Python functions:

Chapter 3 45

An example Python function

def echo(message):

 return f"Message: {message}"

Additionally, the most important concepts to master here are the architecture around the Python

function, such as type hints, docstrings, and decorators – all of which are used extensively by

OpenAI Agents SDK:

•	 Type hints: Python supports optional type hints (also known as type annotations), which

can be used to specify the variable type of inputs and outputs to a Python function. OpenAI

Agents SDK uses type hints as a functional part of the framework. When you create a

custom tool, for example, the SDK inspects your function’s type hints and passes them

to the LLM, enabling it to understand exactly what arguments your tool expects and in

what format. In the following example, type hints specify that the expected input to the

function is an integer and that the output is a string.

•	 Docstrings: Docstrings are strings found directly after the definition of a function, the

purpose of which is to document what the function does, its inputs, and its outputs. In the

context of OpenAI Agents SDK, docstrings serve as metadata that can help the LLM better

understand what the function (or tool) does. Note that this is technically not required,

but it is helpful for proper AI agent interpretability.

•	 Decorators: Decorators are higher-order functions that wrap another function to modify

or enhance its behavior. In the context of OpenAI Agents SDK, decorators are often used

to mark a function as a tool (e.g., @function_tool) and to add metadata such as a tool

name, description, or parameter schema.

The following code snippet demonstrates a complete example that brings all three elements

(decorator, type hints, and docstring) together in a tool function compatible with OpenAI

Agents SDK:

@function_tool # decorator

def get_order_status(orderID: int) -> str: # type hint

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

Environment Setup and Developing Your First Agent46

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Understanding how to properly structure your functions with these elements will make your

agent tools more readable, maintainable, and compatible with the SDK’s built-in features.

Python asynchronous programming
Most modern Python programs are synchronous, meaning that each step in the program executes

one at a time sequentially. In short, each step must be successfully completed before the next

one can begin. This contrasts with asynchronous programming, which handles operations

concurrently and which (thankfully) Python also supports with the asyncio library and async/

await commands.

OpenAI Agents SDK provides both synchronous and asynchronous ways to run agents. However,

the preferred way to run the agent is asynchronously, especially for more complex use cases (e.g.,

running multiple agents or tools in parallel). Agentic workflows are asynchronous, spending much

of their time waiting for external operations such as API calls, tool executions, LLM responses,

and so on. To manage this efficiently and enable your agent to do multiple things at the same

time, OpenAI Agents SDK uses Python’s asynchronous programming features without blocking

the whole program.

The basics of Python’s asynchronous programming can be summarized as follows:

•	 An async function is defined using async def instead of the traditional def statement

•	 async functions must be called by prepending the execution with await

•	 async functions can only be called by other async functions or an event loop

•	 An event loop can be created in Python using the asyncio.run() command

Note

For many of the examples covered in the book, a synchronous call is actually fine

to use, as (at least in the beginning) we will not be handling multi-agent queries,

multi-tool calls, or streaming output. However, it’s still good to understand how

async works and prioritize running async, as the SDK is built to take advantage of it.

Chapter 3 47

As we progress through the chapters, you will encounter both synchronous and asynchronous

patterns. Having a solid grasp of Python’s async model will help you better understand how agent

interactions are orchestrated under the hood and how to scale your workflows more efficiently.

Python Pydantic data validation
Pydantic is a comprehensive Python library used for data validation. In short, this library enables

developers to define a data structure (called a model), and the library will automatically verify

that a specific data input matches that data structure.

OpenAI Agents SDK uses Pydantic in several different ways:

•	 Structured inputs into tools: When building tools, you can define the expected input

parameters not only using type hints as we discussed before, but also using a Pydantic

data structure model. This allows the SDK to validate inputs before passing them to the

function, and also provides a clear schema that the LLM can understand and follow when

invoking the tool.

•	 Structured outputs from agents: You can define a data structure in Pydantic and set it as

the desired outputs within an agent. In this way, you can be sure that any outputs received

from an agent will always conform to your set Pydantic data model structure. This means

your outputs adhere to a consistent, structured format, which is ideal for downstream

processing or API responses.

•	 Guardrails within an agent execution: Pydantic models can also be used within the logic

of an agent to enforce constraints during execution with the guardrails feature. A step

within an agent workflow may require data validation or a guardrail before proceeding

to the next decision, and using Pydantic here helps catch any errors (through the use of

guardrail triggers).

The following code snippet demonstrates how to define a structured Pydantic model and use it

as input to an OpenAI tool, enabling automatic validation and schema clarity:

from pydantic import BaseModel, Field

from openai import OpenAI

from openai.agent import tool

Step 1: Define the structured input using Pydantic

class PersonInput(BaseModel):

 name: str = Field(..., description="The full name of the person")

Environment Setup and Developing Your First Agent48

 age: int = Field(..., ge=0, le=150, description="The age of the person
in years")

 email: str = Field(..., description="The email address of the person")

Step 2: Create the tool using the @function_tool decorator

@function_tool

def process_person(input: PersonInput) -> str:

 """Processes a person's information and returns a summary."""

 return f"{input.name} is {input.age} years old. Contact: {input.
email}"

Knowledge of Pydantic is useful for understanding how the SDK ensures data reliability. While

technically it’s not necessary to be a Pydantic expert to use the Agents SDK, being able to recognize

when to use a Pydantic model instead of regular type hints can be helpful. In cases where complex

agents exchange structured data, Pydantic models may be used to define these structures.

Developing your first AI Agent
Now that our environment is configured and we understand the core Python development concepts,

it’s time for the most exciting part: building and executing our first AI agent. We will first run

our agent and then go through it step by step, examining the output and the internal stages that

the agent went through. After that, we will add more complexity to our agent (e.g., integrating a

tool, using multiple agents, etc.) to make it more sophisticated. Here is how the structure looks:

Figure 3.4: Agent components

A simple customer service agent
Suppose we are building a customer service agent, one that can be used by our company to

facilitate customer requests. Create a new Python file under the Chapter3 folder called customer_

service_agent.py, and write the code needed to define the agent, provide input, and then run

the agent.

Chapter 3 49

The following code snippet demonstrates how to create and execute a basic customer service

agent using OpenAI Agents SDK:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o")

Run the Control Logic Framework

result = Runner.run_sync(agent, "How do I cancel my order?")

Print the result

print(result.final_output)

After activating our environment and running this file, you get the following output:

To cancel your order, please contact our customer service team directly.
You can reach us by phone at [Your Phone Number] or email us at [Your
Email Address]. Be sure to have your order number handy so we can assist
you quickly.

Note

In this particular example, the agent is trying to respond best to the customer’s

inquiry, and because of the probabilistic nature of LLMs, the response that you see

may be different.

Environment Setup and Developing Your First Agent50

Let’s break this down step by step:

1.	 We first loaded in all the required libraries and environment variables needed to build

and run agents in Python; this is like what we had previously in the chapter.

2.	 We then instantiated a new Agent class called agent and defined its three arguments: name,

instructions, and model. These form part of the system prompt of the agent, which we

already defined earlier in the book as the prompt that tells the model of the agent how to

act and drives its underlying behavior. In this case, it’s meant to instruct the agent to act

as a customer support agent that responds to customer queries for a local paper company.

3.	 We then call the Runner.run_sync function, passing the newly created agent object as

well as input_context, which, in this case, is a question that a customer may ask. Under

the hood, this Runner class is responsible for the control logic framework that we had

described earlier in Chapter 1. This calls the LLM (as defined in agent) with the current

input_context, receives the response from the LLM, and then starts a loop/lifecycle:

•	 If the LLM returns what it believes to be the final output given the agent’s

instructions and the initial prompt, it returns the result and ends the loop

•	 If the LLM returns a desired action to be made, whether it’s calling a tool (or

calling several tools) or performing a handoff, the Runner class runs those tool

calls/performs the handoff, appends the outputs, and reruns the agent loop. This

process continues until the desired objective is achieved (or until it exceeds a

specified maximum number of loop turns).

4.	 Then, Runner.run_sync returns a RunResult object, which can be parsed. The final_

output parameter of the object is then displayed to the user.

In this case, the agent’s sophistication is very simple. It is simply calling the LLM GPT-4o

with the system prompt and input prompt, and then returning the response. So, in our

first use case, the loop just ran once:

•	 The LLM was called with the system prompt of You are an AI Agent that helps

respond to customer queries for a local paper company, and an input

prompt of How do I cancel my order?

•	 The LLM returned a final_output (which is an object and hence did not want to

perform a handoff or call a tool)

•	 The loop ended as it was a final output, and the results were displayed to the user

Chapter 3 51

It’s important to understand this loop before we add more complexity. Remember that no matter

how complex the agent gets, Runner is continuously reasoning through this loop, driven by the

LLM’s outputs, at each step. The benefit of the SDK is that it abstracts much of this process for us.

Now, let’s progressively add features to make the system more agentic, starting with tools.

Adding a tool
We will first add a tool that enables the agent to see the order delivery status based on order IDs.

This would typically be done with a database lookup, but we will hardcode the logic for simplicity.

The underlying complexity of the function or tool is not relevant; what the SDK accomplishes for

us is providing the agent with the decision-making of whether to call the tool, creating the inputs

of the tool, running the tool, and then interpreting the outputs of the tool.

We must first make an additional import from the agents class:

from agents import Agent, Runner, function_tool

Let’s add the following code snippet right above our agent definition:

Create a tool

@function_tool

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Then, let’s modify our agent definition by adding another argument for tools:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status])

Environment Setup and Developing Your First Agent52

Finally, let’s edit input_context to make the prompt relevant to the tool we just added:

result = Runner.run_sync(agent, "What's the status of my order? My Order
ID is 200")

After running our new Python program, here is the output:

Your order with ID 200 is currently delayed. If you have any further
questions or need assistance, feel free to let me know!

In this example, we added a tool called get_order_status to our customer service agent. We

needed to do two things to add the tool to the agent:

1.	 We added a @function_tool decorator to the custom Python function. This decorator

informs the SDK of the tool’s name, its arguments, its purpose, and its return type, all done

via the function’s type hints and docstrings. This is important: any Python function can

become a tool that is called by the agent once it’s decorated with the @function_tool class.

2.	 We added the name of the function to a list, which we then passed in the tools argument

when we instantiated the agent object.

After doing this, the agent can decide to use the tool based on its overall objectives and the input

task it has been given. In our case, the user asked explicitly about the status of an order and

provided an order ID.

During the control logic framework loop, the LLM did not return a final_output (object) Instead,

it was provided with the tool called get_order_status (and its metadata), and decided that the

tool must be executed next in its loop, providing the orderID input argument as 200. The Runner

class then executed the function with the input and then added the function output (Delayed)

to the agent’s input_context (object), starting another loop iteration. At this point, the LLM is

given not only the original user input (i.e., What's the status of my order 200?) but also the

output of the function (i.e., The order is delayed). The LLM then constructs a final_output

message, which is then displayed back to the user.

The series of steps here may be confusing, but they can be visualized. In fact, OpenAI maintains

a very good log of each and every agent run, which displays every LLM call, tool execution, and

handoff that is made – this is called a trace. To find the trace for our most recent agent call, follow

these steps:

1.	 Go to https://platform.openai.com/ and log in with the same account you logged in

with previously (where you had generated the API key).

2.	 Select Dashboard from the top-right menu and then select Traces from the left menu.

https://platform.openai.com/

Chapter 3 53

3.	 Select the trace with the most recent Created time. You should see a trace that looks like

the following:

Figure 3.5: Tracing example in the OpenAI UI, showing different steps

This trace tells you everything you need to know about your agent run, and you can click

each individual step within a trace to get more details. In my case, I see that the Runner

class first called the LLM with the system prompt and input prompt we had described

before. The result of that LLM call was to execute a function call, with "orderID": 200

as the input argument.

Figure 3.6: Tracing example in the OpenAI UI, showing details of the first step

Environment Setup and Developing Your First Agent54

4.	 Then, the get_order_status tool was called, with the string Delayed was returned by

that tool.

Figure 3.7: Tracing example in the OpenAI UI, showing details of the second step

5.	 Finally, one last LLM call was made with the input (What's the status or my order? My

Order ID is 200, and Function call get_order_status("orderID": 200) returned

Delayed). The LLM returned Your order with ID 200 is currently delayed. If you

have any further questions or need assistance, feel free to let me know!,

which is exactly what we saw before.

Figure 3.8: Tracing example in the OpenAI UI, showing details of the third step

Chapter 3 55

Note that we will cover tracing in much greater detail in subsequent chapters, but it’s useful to

see behind the scenes on the “thinking” that is happening within the control logic framework.

Adding a handoff
A useful feature of OpenAI Agents SDK is the ability for an agent to hand off a task to another

agent. This is useful if you want to have multi-agent orchestration or agent specialization. For

example, you may want to break a problem into sub-tasks handled by different agents specialized

in their field. In our example, if the customer wants to cancel their order with us, we may want

our agent to hand off to another agent that is uniquely specialized in customer retention (it may

be instructed to utilize retention strategies or may be able to call tools that offer discounts to the

customer). Agent handoffs are especially useful if you want agents that specialize in different

knowledge domains.

Let’s create a new agent that specializes in customer retention and add it as a potential handoff

to our existing agent structure.

First, create a new agent that specializes in handling customer retention problems:

Define the customer retention agent

customer_retention_agent = Agent(

 name="Customer Retention Agent",

 instructions="You are an AI agent that responds to customers that want
to close their accounts and retains their business. Be very courteous,
relatable, and kind. Offer discounts up to 10% if it helps",

 model="gpt-4.1"

)

Note

It is worth knowing that just because a tool is accessible to the agent does not mean

that the agent will use it. In fact, this is one of the most important aspects of agentic

AI: tool choice and other decisions are not deterministic. Instead, decision-making is

made based on the context of the user’s request. If the user instead asked How do I

change my password?, then it would not need to call the get_order_status tool.

Environment Setup and Developing Your First Agent56

Then, add a new list argument called handoffs to our original agent, and add the newly created

agent to it:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status],

 handoffs=[customer_retention_agent])

Finally, let’s edit input_context to make the prompt relevant to the tool we just added:

result = Runner.run_sync(agent, "I want to cancel my order and account.
You delayed by order for the 3rd time!")

After running our new Python program, here is the output:

I sincerely apologize for the repeated delays with your order. I
understand how frustrating and disappointing this experience has been, and
I want to make things right.

While I know you're considering canceling, I'd love the opportunity to
make it up to you. As a thank you for your patience, I can offer you a 10%
discount on your order, and I will personally monitor your order to ensure
there are no further issues.

If you still prefer to cancel, I will completely respect your decision and
assist with that right away. Please let me know how you'd like to proceed—
your satisfaction is very important to us!

In this case, we have created two agents: the agent that we had before that acts as a customer

service manager, and another called customer_retention_agent that specializes in customer

retention. The customer service manager agent fields any requests from the customer, and then

either responds to the inquiry, calls the get_order_status tool, or hands off the task to the

customer retention agent.

In this example, during the control logic framework loop, the LLM again did not return a final_

output. Instead, it decided to hand off the task and input context to another agent. The Runner

class in the SDK sees that and switches context to the other agent (with the same user question).

Then, that agent is now “in charge,” processes the user request, and produces the final answer.

Chapter 3 57

This series of steps can also be seen in the tracing for this workflow:

Figure 3.9: Tracing example in the OpenAI UI, showing all the steps

This multi-agent setup can be expanded to many agents and complex routing logic. The power

here is that each agent can have its own persona and capabilities, and you let the model decide

which agent is appropriate via the handoff mechanism. The SDK’s role is to seamlessly pass control

(including conversation history if any) from one agent to another as directed by the model’s output.

Summary
In this chapter, we set up the development environment required to use OpenAI Agents SDK. We

installed the SDK in an isolated Python environment, configured our OpenAI API key, and verified

our setup by running a minimal agent.

We also covered key Python constructs that the SDK leans on heavily. We discussed how type hints

and docstrings provide metadata that the LLM uses to interpret your tools and how decorators

mark functions as callable tools. We then learned about asynchronous execution in Python and

why that is relevant for agents. Finally, we saw how Pydantic models validate structured inputs

and outputs.

We then built our first real agent, which was a simple customer service assistant, and then

extended its capabilities by adding a tool and handoff. We added a new tool that the agent could

execute when the customer wanted the status of an order. We did this by creating a custom

Python function (get_order_status) that was well-typed and documented, and then added the

@function_tool decorator to it.

Environment Setup and Developing Your First Agent58

We then introduced how multi-agent orchestrations can work by creating multiple agents and

enabling them to hand off to one another. In our example, we created a customer agent that was

specialized in retention and to which our main agent could hand off if needed.

In each enhancement, we discussed how the SDK’s control logic framework handles reasoning, tool

execution, and agent switching behind the scenes, letting you build complex, adaptive systems

with minimal code.

We have only scratched the surface of AI agents and the SDK. In the next chapter, we’ll deep dive

into building and integrating AI agent tools.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

packtpub.com/unlock
packtpub.com/unlock

Part 2
OpenAI Agents SDK

Part 2 is the technical core of the book. Here we move from “agent as an idea” to “agent as an

engineered system,” using OpenAI Agents SDK as our primary vehicle. Each chapter deepens

one specific capability and the primitives set of OpenAI Agents SDK. For each component, we

discuss the theory and then apply it to examples and demos as we build practical AI agents and

agentic systems.

Specifically, you will extend your agent with tools (from simple functions to hosted tools and

agents-as-tools), add memory and knowledge retrieval, and compose multi-agent systems with

deliberate handoffs. You will learn how to tune models and context, how to structure multi-agent

systems, and how to deploy and monitor them with guardrails and policies.

This part contains the following chapters:

•	 Chapter 4, Agent Tools and MCPs

•	 Chapter 5, Memory and Knowledge

•	 Chapter 6, Multi-Agent Systems and Handoffs

•	 Chapter 7, Model and Context Management

•	 Chapter 8, Agent System Management

4
Agent Tools and MCPs

Now that we’ve built our first working AI agent, it’s time to give it some real capabilities. In

this chapter, we’ll go beyond the basics and dive deep into one of the most important elements

of OpenAI Agents SDK: tools. Tools are what enable agents to interact with the outside world,

such as querying databases, calling APIs, performing calculations, generating content, and even

calling other agents.

Here is what you will learn as part of this chapter:

•	 Custom tools: Learn how to define Python functions and register them as tools using the

@function_tool decorator. We’ll explore how to configure tool metadata, validate inputs

using Pydantic, and control how tools are described to the agent.

•	 Agent-tool behavior: Understand how to influence when and how an agent uses a tool

by leveraging parameters such as tool_choice and tool_use_behavior.

•	 OpenAI-hosted tools: Use OpenAI’s pre-built tools, such as WebSearchTool,

FileSearchTool, and CodeInterpreterTool, to extend agent capabilities.

•	 Agents as tools: Learn how to turn an entire agent into a callable tool, enabling modular

orchestration and hierarchical workflows.

•	 MCPs: Connect to external MCP servers to retrieve tools rather than building your own.

By the end of this chapter, you will be able to equip your agents with powerful capabilities, from

simple arithmetic to real-time API access, from generating images to querying vector databases,

and connecting to external MCP servers. You will also be able to control how agents use tools.

Let’s get right into it.

Agent Tools and MCPs62

Technical requirements
Please follow the detailed steps in Chapter 3 to set up your environment.

Throughout this book, practical examples and complete code from each chapter will be made

available via the accompanying GitHub repository: https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

Using custom tools with Python functions
In this section, let’s explore how to define and configure custom tools using Python functions

within OpenAI Agents SDK. As a reminder, tools are a core part of the agent’s capabilities as they

enable the agent to go beyond its internal knowledge and perform tasks such as fetching data,

processing user requests, or triggering actions. We’ll begin with simple tool definitions using the

@function_tool decorator and then progress to more advanced capabilities, such as overriding

tool parameters and using Pydantic models for complex input validation.

Defining a new tool
As we discussed in the previous chapter, OpenAI Agents SDK provides a @function_tool decorator

that turns any Python function into a tool that can be called by an agent. For example, we will

bring back the code that we wrote in the previous chapter that creates a simple tool and calls an

agent with that tool:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Create a tool

@function_tool

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 4 63

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status])

Run the Control Logic Framework

result = Runner.run_sync(agent, "What's the status of my order? My Order
ID is 200")

Print the result

print(result.final_output)

By decorating any Python function, the SDK infers the tool name, purpose, and input arguments

from the function’s name (get_order_status), description (Returns the order status given an

order ID), and its input schema (orderID: int), respectively. A clear, human-readable name

and docstring are very important as the agent will see this description when deciding whether

to use the tool. It should explain what the tool does and what inputs it expects (including units

or formats). In this case, we did not have to manually write a JSON schema; the SDK generated

it from the function signature.

Agent Tools and MCPs64

These tool parameters, however, can also be explicitly defined, if needed, by overriding the default

characteristics of the function. Here’s an example:

Create a tool

@function_tool(

 name_override="Get Status of Current Order",

 description_override="Returns the status of an order given the
customer's Order ID",

 docstring_style="Args: Order ID in Integer format"

)

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Typically, this is done to give developers more control over how the tool is represented and

interpreted by the agent. For example, the name_override parameter lets you define a more

descriptive or user-friendly name than what’s derived from the function itself. This is particularly

useful when the function name is too generic or not expressive enough for the agent to infer its

purpose accurately.

This level of explicit control can be really valuable when tool behavior is ambiguous, when

localization or formatting standards need to be enforced, or when multiple tools share similar

structures but differ in subtle ways that the agent must distinguish.

Chapter 4 65

Agent and tool behavior
The agent autonomously decides when to call a tool and what tool to call. We have already

discussed previously that this decision is governed by the LLM in the control logic framework, a

decision tree loop that is managed by the Runner class. On each cycle of the loop, the following

happens:

1.	 The Runner class sends the current list of messages to the LLM.

2.	 The LLM responds either with a “final answer” or a “tool call” (for simplicity, let’s assume

these are the only two options for now).

3.	 If “tool call” is the response, the Runner class executes the corresponding Python functions

and appends their string-based outputs to the message history, and the cycle repeats until

a final answer is produced.

By default, the model will decide if and when to use a tool. However, we can ultimately influence

the tool decision step, and for certain use cases, we may need to do this. The SDK gives developers

control via several settings.

Tool choice
One such setting is called the ModelSettings.tool_choice parameter, which gives us the ability

to control the model’s approach to tool usage in the following way:

•	 auto: The model decides itself whether to call a tool and which one (default option)

•	 required: Forces the model to use a tool

•	 none: Prevents the model from using any tools

Modifying this setting is useful when you want to purposely control the agent’s behavior. For

example, if you are creating an agent that must always retrieve data from a database/internal

knowledge base and never rely on the model’s internal knowledge, you can set tool_choice to

required, which ensures that the agent calls the tool every time.

Note

The @function_tool decorator works with both synchronous and asynchronous

functions. If your function uses async def, the SDK will handle it correctly and the

agent will be able to await its result automatically. This flexibility is useful when your

tool interacts with external APIs, databases, or other async workflows.

Agent Tools and MCPs66

In the following example, we explicitly set tool_choice to required to ensure the model does

not attempt to respond without using the get_order_status tool. This guarantees that the

agent’s answer comes from the trusted source, regardless of how obvious or simple the answer

might seem to the LLM.

from agents import Agent, Runner, function_tool, ModelSettings

@function_tool

def get_order_status(orderID: int) -> str:

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

agent = Agent(

 name="Strict customer service agent",

 instructions="You are a customer service agent that must always use
the backend system to check order status. Do not guess.",

 model="gpt-4o",

 tools=[get_order_status],

 model_settings=ModelSettings(tool_choice="required")

)

result = Runner.run_sync(agent, "Can you check the status of Order ID 101?")

print(result.final_output)

This example demonstrates how setting tool_choice="required" ensures the model must invoke

the get_order_status tool and cannot rely on its internal knowledge. This guarantees that all

responses are based on the backend system, reinforcing accuracy and trust in the agent’s behavior.

Note

If none of the available tools are appropriate for the task, and tool usage is required

(tool_choice="required"), the model will raise an error or refuse to answer, since

it is not permitted to respond without using a tool. This ensures that all outputs are

grounded in trusted, explicitly defined logic.

Chapter 4 67

This setting can also be used to mandate tool usage for compliance or auditability purposes,

typically required for legal or finance use cases. We can also use this setting to restrict tool access

in sensitive situations or isolate the LLM in a sandboxed environment during testing.

Tool use behavior
Another critical setting in agent and tool behavior is the aptly named Agent.tool_use_behavior,

which controls what happens after a tool is called and its output is returned. The options for this

setting are as follows:

•	 run_llm_again: After the tool executes, the agent returns the output to the LLM as part of

the control logic framework, and the LLM then decides whether a “final output” has been

reached to return the final answer. This enables the model to interpret the output of the

tool and create a response in context with the user’s question. This is the default option.

•	 stop_on_first_tool: The first tool output is treated as the “final response” and no further

model calls are made.

•	 agent.StopAtTools.stop_at_tool_names: A list of strings that represent the list of tools

for which we want the agent to stop running and simply respond with the output of the

tool.

These options allow you to craft agents that behave more deterministically or with more flexibility,

depending on the task. For example, the stop_on_first_tool option is especially useful when

the tool’s output is the answer (e.g., such as a database response, a computation, etc.) – anywhere

where it does not make sense to process the output back to the LLM.

The last option is useful if you have a list of tools that, when triggered, should immediately

terminate the agent’s execution and return the tool’s output as is. This could be either cases that

match the preceding description, or perhaps “trigger points” where we would want the agent to

stop executing (i.e., if the user asks to speak to a manager).

Note

The SDK also allows you to specify a particular tool name, such as tool_choice="get_

weather". This forces the model to call that specific tool and no others. It’s a useful

option when validating or testing individual tools in isolation, or when you want to

bypass the model’s tool selection logic entirely for consistency or control.

Agent Tools and MCPs68

The following is an example use case of the agent.StopAtTools.stop_at_tool_names option.

This is where our customer service agent has a tool that performs a sensitive operation, such

as generating an invoice, where it is preferable to display the tool’s output directly to preserve

accuracy, formatting, or legal wording:

from agents import Agent, Runner, function_tool, StopAtTools

@function_tool

def create_invoice(orderID: int) -> str:

 return f"Invoice for Order {orderID}: $123.45 (Generated on 2025-07-
05)"

agent = Agent(

 name="Invoice generator agent",

 instructions="Generate and return an invoice when requested.",

 model="gpt-4o",

 tools=[create_invoice],

 stop=StopAtTools.stop_at_tool_names(["create_invoice"])

)

result = Runner.run_sync(agent, "Please create an invoice for Order 300")

print(result.final_output)

In this example, the agent calls the create_invoice tool and returns the raw output string directly,

without any additional LLM processing. This preserves the original content from the tool output.

Complex tool inputs with Pydantic
We discussed in the previous chapter that the SDK supports Pydantic for complex tool inputs and

talked about its benefits, namely, in data validation. As a reminder, instead of using simple type

hints such as str or int in your input arguments, you can define a Pydantic BaseModel object to

represent hierarchical or detailed input structures. When used as a function argument, the SDK

treats the entire model as a single parameter, automatically generating a corresponding nested

JSON schema. This makes it easier for the LLM to understand and call tools with the right input

schema for complex inputs.

Chapter 4 69

Let’s put this to the test and go through a concrete example. Following our customer service theme,

suppose we want to create a tool that can process customer refunds. The problem? Processing a

refund requires complex input: the order ID, the customer’s email, the reason, and so on. To add

to the complexity, the tool should be able to process multiple refunds at once. In this case, In this

case, let’s define a class of BaseModel, called RefundRequest:

from pydantic import BaseModel, List

class RefundRequest(BaseModel):

 order_id: str

 customer_email: str

 reason: str

 requests: List[RefundRequest]

Now that we have done this, we can pass in RefundRequest as the input argument to our custom

function.

@function_tool

def process_refund(request: RefundRequest) -> str:

 """Process a refund request and return confirmation."""

 # Logic to interface with internal refund systems would go here

 return (f"Refund request for order {request.order_id} has been
submitted. "

 f"A confirmation will be sent to {request.customer_email}.")

When the agent decides to use process_refund, it knows from the schema that the request is a

list of RefundRequest objects, each requiring three fields. The model’s structure is made visible

to the LLM.

Using Pydantic for structured tool input is especially powerful when dealing with real-world

workflows that involve multiple fields, optional parameters, or repeated objects.

Also, it has a bonus of non-LLM input validation. If the LLM “hallucinates” and passes on incorrectly

formatted data, the SDK will catch the problem by raising an error. You can then catch this error,

making your application much more resilient. This is especially useful in agent-LLM interactions,

which by definition are not deterministic.

Agent Tools and MCPs70

For example, suppose the model mistakenly omits a required field or provides the wrong type

for a value, perhaps due to a hallucination or misunderstanding of the tool schema. Let’s say it

submits the following JSON instead:

{

 "order_id": 12345,

 "customer_email": "customer@example.com"

}

This payload is missing the required reason field and also incorrectly types order_id as an integer

instead of a string. When the SDK attempts to instantiate the RefundRequest model from this

data, it will automatically raise a ValidationError object from Pydantic.

Examples of custom tools
Now that we have discussed how to define a new tool and configure its agent-calling behavior,

let’s put that into practical use and fully build a few concrete examples. Each example will be a

standalone script that you can run (assuming that you have set up your environment successfully).

Arithmetic computation tool
The first agent with a custom tool that we will create will be one that performs arithmetic

computation, something that LLMs are notorious for hallucinating. In fact, mathematical

operations should never be performed by an LLM. As a result, we will build an agent that calls a

tool that performs the mathematical operation instead.

In this case, we will build an agent that calculates the mortgage payment for a loan. Create a new

Python script called mortgage_agent.py, with the following code:

Required imports

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool

Load environment variables from the .env file

load_dotenv()

@function_tool

def calculate_mortgage(

 principal_amount: float, annualized_rate: float, number_of_years: int

) -> str:

 """

Chapter 4 71

 This function calculates the mortgage payment.

 Args:

 principal_amount: The mortgage amount.

 annual_rate: The annualized interest rate in percent form.

 years: The loan term in years.

 Returns:

 A message stating the monthly payment amount.

 """

 monthly_rate = (annualized_rate / 100) / 12

 months = number_of_years * 12

 payment = principal_amount * (monthly_rate) / (1 - (1 + monthly_rate)
** -months)

 print(payment)

 return f"${payment:,.2f}."

Define an agent that uses the mortgage calculator tool

mortgage_agent = Agent(

 name="MortgageAdvisor",

 instructions=("You are a mortgage assistant"),

 tools=[calculate_mortgage]

)

Run the agent with an example question

result = Runner.run_sync(mortgage_agent, "What is my monthly payments if I
borrow $800,000 at 6% interest for 30 years?")

print(result.final_output)

In this script, calculate_mortgage is decorated as a custom tool. It takes three inputs and returns

a formatted string with the mortgage payment amount.

When running this script, the agent should recognize that the user’s question is about calculating

the mortgage payment and should call the calculate_mortgage tool with the appropriate

arguments. The tool will compute the payment (about $4,796.84 per month) and then send the

outputs to the LLM. The LLM will then output a completed message as the final answer.

Agent Tools and MCPs72

In my case, the final answer was the following:

The monthly payment for your mortgage would be approximately $4,796.84.

However, note that since the LLM is non-deterministic, you may see slightly different outputs

(but the payment amount should be the same, as it is computed using the tool).

Now, let’s adjust the code to always force the agent to call the tool and to return the output from

the tool instead of calling the LLM again. We will add two parameters: tool_use_behavior="stop_

on_first_tool" and ModelSettings.tool_choice="required". Here is the updated agent

instantiation:

Add import

from agents import Agent, Runner, function_tool

Define an agent that uses the mortgage calculator tool

mortgage_agent = Agent(

 name="MortgageAdvisor",

 instructions=("You are a mortgage assistant"),

 tools=[calculate_mortgage],

 tool_use_behavior="stop_on_first_tool",

 model_settings=ModelSettings(

 tool_choice="required"

)

)

Running this will bypass any further reasoning or rewriting by the LLM. Instead, the agent will

directly return the result produced by the tool as the final output. We may want to do this to

guarantee deterministic and auditable responses, especially in scenarios where accuracy is critical,

such as a mortgage application. It also improves performance by reducing the number of LLM

calls in the loop.

This example shows a clear benefit of having tools: the calculation is precise and the agent does

not have to rely on its trained knowledge (which may make – and is, in fact, infamous for making

– arithmetic mistakes).

Chapter 4 73

External API call tool
The next custom tool we will make uses an external API call. APIs are connectors to different

programs and resources. The Gmail API enables you to read your emails, send an email, and

view calendar invites. The Airbnb API enables you to find Airbnb listings, make a listing, or

send a message. APIs are also used to access real-time data, such as customer records, weather

information, or cryptocurrency prices.

In this example, we will create a tool that will fetch the current price of Bitcoin in USD. Create a

new Python script called crypto_pricing_agent.py, with the following code:

import requests

from agents import Agent, Runner, function_tool

Create the tool

@function_tool

def get_price_of_bitcoin() -> str:

 """Get the price of Bitcoin."""

 url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin&vs_
currencies=usd"

 response = requests.get(url)

 price = response.json()["bitcoin"]["usd"]

 return f"${price:,.2f} USD."

Create the agent

crypto_agent = Agent(

 name="CryptoTracker",

 instructions="You are a crypto assistant. Use tools to get real-time
data.",

 tools=[get_price_of_bitcoin]

)

Run the agent with an example prompt

result = Runner.run_sync(crypto_agent, "What's the price of Bitcoin?")

print(result.final_output)

Agent Tools and MCPs74

In this example, we have created a Python function, get_price_of_bitcoin, that calls the

CoinGecko API (a free public API for cryptocurrency prices) via the requests library. When the

agent calls the tool, the tool calls the API, and the information received from the API is then

passed back to the agent.

Running this agent will always give us the most recent price of Bitcoin, no matter the recency

of the LLM’s training data. At the time of writing this book, the agent’s output was as follows:

The current price of Bitcoin is $108,538.00 USD.

This showcases how agents can be extended with tools that can call APIs. This is important because

it means agents are not bound to the LLM’s own training data or Python capabilities. Tools can

act as live extensions to the model’s knowledge and capabilities, allowing it to interface with

external systems, services, and data sources.

Now, let’s extend our tool so that it can return any cryptocurrency price, and can return the prices

of more than one cryptocurrency within one call. To achieve this, we must remember that tools

can take in as input Pydantic base models. Let’s define the following Pydantic base model:

from pydantic import BaseModel

from typing import List

class Crypto(BaseModel):

 """

 coin_ids: full name string to represent the cryptocurrency

 """

 coin_ids: List[str]

Next, we must update our tool to add the Pydantic base model as an input argument and make

modifications to the logic to accept a list of strings as an input:

Create the tool

@function_tool

def get_crypto_prices(crypto: Crypto) -> str:

 """Get the current prices of a list of cryptocurrencies.

 Args:

 Crypto: an object with list of coin_ids (e.g., bitcoinm ethereum,
litecoin, etc.)

 """

 ids = ",".join(crypto.coin_ids)

Chapter 4 75

 url = f"https://api.coingecko.com/api/v3/simple/price?ids={ids}&vs_
currencies=usd"

 response = requests.get(url)

 data = response.json()

 return data

Create the agent

crypto_agent = Agent(

 name="CryptoTracker",

 instructions="You are a crypto assistant. Use tools to get real-time
data. When getting cryptocurrency prices, call the tool only once for all
requests.",

 tools=[get_crypto_prices]

)

With this structure in place, the LLM sees a clear schema: a single object with a required field,

coin_ids, which must be a list of strings. The SDK will automatically validate that the data passed

matches this structure. For example, if we run the script now after modifying the prompt to be

“What’s the price of Bitcoin and Ethereum?”, it responds with the following:

"The current price of Bitcoin is $108,575, and the price of Ethereum is
$2,534.56"

This is because it is able to pass a list of cryptocurrency strings as input into the Python function.

Note

We included an additional sentence in the agent instructions: “When getting cryp-

tocurrency prices, call the tool only once for all requests.” We did this to guide the

LLM to batch multiple coin price queries into a single tool call. Without this prompt

engineering, the agent may try to call the tool separately for each coin, resulting in

redundant API calls.

Agent Tools and MCPs76

We can also look at the Traces window to confirm this:

Figure 4.1: Function call within Traces

By using tools such as these, the agent can access real-time information that falls outside

the model’s training data. This effectively extends the model’s capabilities, giving it dynamic

awareness of the live environment.

Database query tool
In the previous examples, we demonstrated how tools can handle precise computation and real-

time API access. Another powerful use case is enabling agents to query structured internal data

sources (such as databases) without hardcoding queries or relying on the model to write raw

SQL. Instead, we can encapsulate the logic in a tool that connects with a database. This is similar

to an API call.

Let’s build a simple agent that queries a customer support database to retrieve recent support

tickets. To do this, we will simulate a database with a Python dictionary to avoid requiring a real

database connection, but the same structure would apply when connecting to a live database.

Create a new script called database_query.py and run the following code:

from agents import Agent, Runner, function_tool
from pydantic import BaseModel
from typing import List

create a simulated database

Chapter 4 77

TICKETS_DB = {
 "henry@gmail.com": [
 {"id": "TCKT-001", "issue": "Login not working",
 "status": "resolved"},
 {"id": "TCKT-002", "issue": "Password reset failed",
 "status": "open"},
],
 "tom@gmail.com": [
 {"id": "TCKT-003", "issue": "Billing error",
 "status": "in progress"},
]
}

define Pydantic model
class CustomerQuery(BaseModel):
 email: str

define the tool that does a database query
@function_tool
def get_customer_tickets(query: CustomerQuery) -> str:
 """Retrieve recent support tickets for a customer based on email."""
 tickets = TICKETS_DB.get(query.email.lower())
 if not tickets:
 return f"No tickets found for {query.email}."
 response = "\n".join(
 [f"ID: {t['id']}, Issue: {t['issue']}, Status: {t['status']}"
 for t in tickets]
)
 return f"Tickets for {query.email}:\n{response}"

create the agent
support_agent = Agent(
 name="SupportHelper",
 instructions="You are a customer support agent. Use tools to fetch
user support history when asked about their tickets.",
 tools=[get_customer_tickets]
)

Run the agent

Agent Tools and MCPs78

result = Runner.run_sync(support_agent, "Can you show me the ticket
history for henry@gmail.com?")

print(result.final_output)

In this example, we defined a CustomerQuery Pydantic model that enforces the expected input

structure. The get_customer_tickets function uses this input to look up tickets in a mocked

dictionary that simulates a support database.

When the agent receives a prompt such as “Can you show me the ticket history for henry@gmail.

com?”, it correctly extracts the email, passes it to the tool, and returns a well-formatted summary

of tickets:

Here is the ticket history for henry@gmail.com:

1. **ID:** TCKT-001

 - **Issue:** Login not working

 - **Status:** Resolved

2. **ID:** TCKT-002

 - **Issue:** Password reset failed

 - **Status:** Open

This pattern is applicable for many enterprise use cases, such as looking up customer data,

querying inventory databases, and so on.

Chained tool calls
The LLM behind the agent can not only determine whether to use a tool and when, but also the

order in which to call tools if needed. This is especially useful in cases where the agent has to

perform a multi-step operation and use the outputs of the first tool call as an input to the second

tool call. The agent can also call the same tool several times, if needed.

For example, following our customer service theme, we have a tool called get_customer_orders

(which retrieves all orders for a specific customer ID) and another tool called get_order_

information (which retrieves the status of an order ID). Create a new Python script called tool_

chaining.py, with the following code:

Required imports
from typing import List
from pydantic import BaseModel
from agents import Agent, Runner, function_tool

Chapter 4 79

Define the first tool to get all orders for a given customer
@function_tool
def get_customer_orders(customer_id: str) -> str:
 """
 Retrieve all order IDs associated with a given customer ID.
 Args:
 customer_id: the customer ID
 """
 # Dummy implementation
 if customer_id == "CUST123":
 return ["ORD001", "ORD002", "ORD003"]

Define the second tool to get status of a specific order
@function_tool
def get_order_information(order_id: str) -> str:
 """
 Fetch detailed information about a specific order.
 """
 # Dummy implementation
 status_map = {
 "ORD001": "Shipped",
 "ORD002": "Processing",
 "ORD003": "Delivered"
 }
 return f"Order {order_id} is currently {status_map.get(order_id,
'Unknown')}."

Define the agent
customer_service_agent = Agent(
 name="CustomerSupportAgent",
 instructions="You are a customer service assistant.",
 tools=[get_customer_orders, get_order_information]
)

Run the agent
result = Runner.run_sync(customer_service_agent, "Please check the status
of my orders? My customer ID is CUST123.")

print(result.final_output)

Agent Tools and MCPs80

In this example, the agent is capable of chaining multiple tool calls. When asked for the status of

a customer’s orders, it first calls get_customer_orders with the provided customer ID, receives a

list of order IDs, and then sequentially calls get_order_information for each of those IDs. This

multi-step reasoning is entirely driven by the LLM’s control logic framework, and it dynamically

determines the chaining sequence based on the intermediate tool outputs. We can even verify

this series of operations with the Traces module:

Figure 4.2: List of traces within the Traces module

This demonstrates the agent’s ability for multi-step reasoning across tools and chaining them

into subsequent calls. You don’t have to hardcode the workflow; the SDK orchestrates it for you.

OpenAI hosted tools
The benefit of using the SDK that is built by OpenAI is that it comes with easy access to a set of

powerful and pre-built tools. These tools require minimal setup; they are fully managed and

hosted on OpenAI’s servers (similar to how the LLM is also hosted on OpenAI’s servers). They

are also constantly updated, which means you can leverage the latest and greatest technology

when calling these tools.

Note

OpenAI-hosted tools incur token costs, just like model LLM calls. When a model

calls one of these tools, the tool call and any data passed between the model and

tool are billed as tokens.

Chapter 4 81

Hosted tools are included as part of OpenAI’s Responses API framework. When you specify hosted

tools via the Agents SDK, the model is aware of those tools and can call them as functions in the

same way as custom Python functions. The hosted tools that are available are summarized in

the following table:

Hosted tool What it does

WebSearchTool Performs real-time searches on the web for up-to-date

information

FileSearchTool Performs file information search and retrieval through vector

stores

ImageGenerationTool Generates images

CodeInterpreterTool Runs code in a sandboxed Python execution environment

ComputerTool Opens a computer/browser instance and performs tasks

LocalShellTool Executes shell commands on your local machine

Table 4.1: OpenAI-hosted tools and their usages

On a general note, it rarely makes sense to create a custom tool for a use case that is already

covered in the OpenAI-hosted tool. For example, WebSearchTool performs excellently to search

and query web pages, so it would not make sense to “re-create the wheel” and create our own

Python function to do that. Using these tools is as simple as importing a class, instantiating it,

defining a set of inputs, and passing it to the agent.

We will go through each OpenAI-hosted tool and discuss its use case, its parameters, and create

an agent that leverages the tool.

WebSearchTool
WebSearchTool enables the agent to perform web searches. It is one of the easiest tools to

implement. In fact, most of my enterprise agents have this tool in case the user asks for information

that the agent has not been trained on. This tool is best used when dealing with queries about

recent developments, time-sensitive facts, or anything requiring real-time data.

Note

Hosted tools require models from OpenAI (e.g., GPT-4 or later). These models are

aware of the tools and so can call them. Unfortunately, you cannot use your own

models with these OpenAI-hosted tools.

Agent Tools and MCPs82

The tool takes two optional inputs:

•	 user_location: Returns search results for a specific location. You can specify a location

in the UserLocation format, which is just a dictionary with the type, country, city, and

region keys. This is useful if you have queries where the answer changes based on location,

such as, “Where’s the best place to get bubble tea?”.

•	 search_context_size: Specifies how much information to retrieve per website (and how

many websites to search). You can either specify “low,” “medium,” or “high.” The default

option is “medium.”

Let’s go ahead and start using this tool. We will create an agent that performs simple web search

queries for us. Start by creating a new Python file called web_search_tool.py and copy in the

following code:

from agents import Agent, Runner, WebSearchTool

Instantiate the tool
websearchtool = WebSearchTool()

Create an agent
agent = Agent(
 name="WebTool",
 instructions="You are an AI agent that answers web questions. Answer
in one sentence.",
 tools=[websearchtool]
)

result = Runner.run_sync(agent, "Who won the 2025 Stanley Cup?")

print(result.final_output)

Running this gives us the following output:

The Florida Panthers won the 2025 Stanley Cup, defeating the Edmonton
Oilers in six games to secure their second consecutive championship.
([reuters.com](https://www.reuters.com/sports/florida-panthers-beat-
edmonton-oilers-game-6-win-second-straight-stanley-cup-2025-06-18/?utm_
source=openai))

In this example, the agent has access to a tool that can search the internet for answers. When the

tool is called, OpenAI will perform a web search for that query, read the results (possibly news

articles or even Wikipedia pages), and return a text snippet with relevant info. The agent then

takes that and formulates an answer to the user.

Chapter 4 83

If we run the same agent without WebSearchTool, it’s not able to provide an answer, as this piece

of information is not in its training data: I’m unable to provide real-time information or details about

events occurring in 2025.

Next, we will add a location parameter to the WebSearchTool class. Let’s adjust our agent to search

for information, assuming they are in Toronto, Canada, and ask for the top three Italian restaurants:

from agents import Agent, Runner, WebSearchTool

Instantiate the tool
websearchtool = WebSearchTool(user_location={
 "type": "approximate",
 "country": "CA",
 "city": "Toronto",
 "region": "Ontario",
 })

Create an agent
agent = Agent(
 name="WebTool",
 instructions="You are an AI agent that answers web questions. Answer
in one sentence.",
 tools=[websearchtool]
)

result = Runner.run_sync(agent, "What are the top 3 Italian restaurants?")

print(result.final_output)

Here’s the output:

Output

Based on recent accolades and reviews, the top three Italian restaurants
in Toronto are:

1. **Don Alfonso 1890**: Located on the 38th floor of The Westin Harbour
Castle, this restaurant has retained its Michelin star since 2022 and was
named the Best Italian Restaurant in the World (outside of Italy) by 50
Top Italy in 2022. ([en.wikipedia.org](https://en.wikipedia.org/wiki/Don_
Alfonso_1890?utm_source=openai))

Agent Tools and MCPs84

2. **Osteria Giulia**: Situated in Yorkville, Osteria Giulia has held a
Michelin star since 2022 and was ranked number 17 in Canada's 100 Best
Restaurants list in 2024. ([en.wikipedia.org](https://en.wikipedia.org/
wiki/Osteria_Giulia?utm_source=openai))

3. **DaNico**: Also Michelin-starred, DaNico was ranked 59th in Canada's
100 Best Restaurants list in 2025. ([en.wikipedia.org](https://
en.wikipedia.org/wiki/DaNico?utm_source=openai))

In this way, we have created a sophisticated internet-based agent in fewer than 15 lines of code.

There is no other SDK where you can get so much for so little.

FileSearchTool
FileSearchTool enables an agent to query a vector store of documents for relevant information.

This is effectively OpenAI’s hosted solution for retrieval-augmented generation (RAG). In this

chapter, we will only demonstrate how to use the tool, but will deep dive much further into RAG

and agent knowledge management in future chapters.

The most common use case for this tool is to query internal knowledge bases or a large corpus

of text. This tool enables you to quickly spin up an agent that can answer questions from a set

of documents. It can even reference the exact documents/chunks it used to derive the answer.

To use this tool, you must first upload your files to the OpenAI platform and create a vector store.

A vector store is a special type of database that stores semantic embeddings of your documents.

Semantic embeddings are numerical representations of text that capture its meaning, rather

than just its exact words.

This enables the LLM to retrieve the most relevant pieces of text based on the meaning of a

user’s query, rather than relying on exact keyword matches. Once your files are uploaded, OpenAI

automatically handles the embedding behind the scenes, enabling fast and accurate retrieval

through RAG. This process happens outside the SDK itself, typically through the platform UI

manually or through the regular OpenAI API spec.

Follow these steps to create a vector store:

1.	 Go to the OpenAI platform at https://platform.openai.com/ and log in. Ensure you log

in using the same account you used when generating the API key.

https://platform.openai.com/

Chapter 4 85

2.	 Select Dashboard from the top-right, then select Storage, and then toggle to Vector stores.

Figure 4.3: Storage page within OpenAI dashboard

3.	 Select Create to create a new vector store. Type in a vector store name such as DroneFiles.

4.	 Scroll down and add a file to the vector store by selecting + Add files.

5.	 Upload the XdroneManual.pdf file (which can be found in the repository under Chapter 4).

Give it the name DroneManual.pdf and select user_data for Purpose. Then, select Attach.

6.	 The PDF we uploaded has now been successfully added to our new vector store, and all

the related operations to enable RAG (such as producing embeddings, etc.) are complete.

Again, the subsequent chapter will cover this in much more detail.

7.	 Copy and save the vector store ID for the new vector store that you just created.

Figure 4.4: Vector store ID within OpenAI dashboard

Agent Tools and MCPs86

Now that we have a vector store ID, we can use it as an input to the FileSearchTool class. In fact,

the tool takes in the following key inputs:

•	 vector_store_ids: This is a required input that represents the list of vector store IDs

to search through when calling this tool. Note that the OpenAI API key that you have

provided to the Agents SDK must point to the same account that has access to the vector

store (otherwise, you will run into permission errors).

•	 max_num_results: An integer that represents the number of search results to return.

•	 include_search_results: A boolean that determines whether to include the full text of

the search results in the tool output.

We will create an agent that leverages the new vector store we have just created. Let’s start by

creating a new Python file called file_search_tool.py and copy in the following code:

from agents import Agent, Runner, FileSearchTool

Instantiate the tool

filesearchtool = FileSearchTool(

 vector_store_ids=['vs_686ce7bc2ad081918f297d962afaee95']

) # replace with your own vector store ID

Create an agent

agent = Agent(

 name="WebTool",

 instructions="You are an AI agent that answers questions from the
listed vector stores. Answer in one sentence.",

 tools=[filesearchtool]

)

result = Runner.run_sync(agent, "How high can you fly this drone?")

print(result.final_output)

Running this script will give us the following answer, which the agent was able to pull from the

manual that we uploaded:

Output

The drone can be flown up to a maximum altitude of 60 feet (20 meters).

Chapter 4 87

In this way, FileSearchTool enables an agent to ground its responses in written material that it’s

been provided. Rather than relying solely on the LLM’s prior training, the agent is able to fetch

relevant information from your own internal documents.

ImageGenerationTool
ImageGenerationTool enables the agent to create images based on text prompts. This typically

hooks into OpenAI’s image generation service. After integrating this tool, the agent can respond

to prompts such as “Generate an image of an elephant.” Typically, the most common use case is

generating visuals (product mockups, demos, designs, etc.).

In terms of inputs, the ImageGenerationTool class takes an ImageGeneration object as a tool_

config argument, where you can specify size, quality, format, compression, and the background

of your image. You must specify the type, which at this point is always equal to image_generation.

Let’s build an agent that can generate images. Create a new Python file called image_generation_

tool.py and copy in the following code:

from agents import Agent, Runner, ImageGenerationTool

from agents.tool import ImageGeneration

Instantiate the tool

tool_config = ImageGeneration(

 type="image_generation",

)

imagetool = ImageGenerationTool(tool_config=tool_config)

Create an agent

agent = Agent(

 name="ImageTool",

 instructions="You are an AI agent that generates images.",

 tools=[imagetool]

)

Agent Tools and MCPs88

result = Runner.run_sync(agent, "Generate an image of an elephant.")

print(result.final_output)

Running this script gives a URL to the following image:

Figure 4.5: Output generated after running the preceding code

In this tool, OpenAI’s servers will generate an image for that prompt and return a URL of where

the image is hosted. You can then have a workflow that takes that image, saves it somewhere, or

sends it to someone. This tool is great for creative or visual tasks. For instance, an agent could

dynamically create data visualizations (by generating a chart image from a description) or just

illustrate responses.

Note

You may encounter a PermissionDeniedError object. If this occurs, follow the

instructions to verify your organization within the OpenAI platform settings.

Chapter 4 89

CodeInterpreterTool
CodeInterpreterTool enables the agent to write and execute Python code in a sandboxed

environment. The tool is extremely useful for any data analysis or computation task. We’ve

discussed before how mathematical computations should be performed by tools (not LLMs due

to the risk of hallucinations), and we previously did that by building a custom Python function

that computed monthly mortgage payments. CodeInterpreterTool takes this one step further:

instead of needing to define the actual formula for mortgage payments, this tool can derive its

own given a simple prompt, and then can execute that code.

This tool executes code in a sandboxed environment. As a result, the tool requires a container object

to be initialized prior to use. It can either be created automatically (where the tool creates its own

container at runtime) or explicitly (where you create a container using the OpenAI endpoint and

then pass the container ID). In this case, for simplicity, we will choose the auto option.

Let’s jump right into an example. Create a new file called code_interpreter_tool.py and run

the following code:

from agents import Agent, Runner, CodeInterpreterTool

from agents.tool import CodeInterpreter

Instantiate the tool

tool_config = CodeInterpreter(

 container={"type":"auto"},

 type="code_interpreter"

)

codetool = CodeInterpreterTool(tool_config=tool_config)

Create an agent

agent = Agent(

 name="CodeTool",

 instructions="You are an AI agent that writes and runs Python code to
answer questions.",

Note

Image generation is prone to hallucinations, much more than text output. The images

generated may not be accurate or even logically consistent with the input prompt.

Agent Tools and MCPs90

 tools=[codetool]

)

result = Runner.run_sync(agent, "What is my monthly payment for a $800,000
mortgage at 6% for 30 years?")

print(result.final_output)

Running this code gives the following output:

The monthly payment for an $800,000 mortgage at 6% interest over 30 years
is approximately $4,796.40.

To derive the answer, the agent called CodeInterpreterTool and wrote the Python code to

calculate the monthly mortgage payment given the inputs we provided. It then ran the code in

a container environment, calculated the answer, and then passed the answer back to the LLM

to produce a final output.

In fact, we can verify this by looking at the Traces module:

Figure 4.6: Code Interpreter output within the Traces module

Chapter 4 91

CodeInterpreterTool enables the agent to handle tasks that involve calculation, data crunching,

or producing outputs such as charts, which pure LLMs might struggle with or be slow at. It’s like

giving the agent a smart junior data analyst.

With these predefined hosted tools, you can build sophisticated agents that can browse the web,

search through files, generate images, and run code with just a few lines of code. There’s nothing

stopping you from adding multiple tools to one agent.

In this section, we explored the suite of OpenAI-hosted tools available through the Agents SDK,

including WebSearchTool, FileSearchTool, ImageGenerationTool, and CodeInterpreterTool.

These tools dramatically extend the capabilities of your agents, enabling them to access real-

time information, retrieve knowledge from documents, generate images, and perform advanced

computations – and all of that with minimal setup. Understanding how to integrate and configure

these hosted tools is essential for building powerful, production-ready agents. In the next section,

we’ll shift our focus to agent-as-tools, where you will learn how to define agents as tools.

Agents as tools
One of the most powerful architectural patterns in the Agents SDK is the ability to use an entire

agent as a tool for another agent. This is known as the agent-as-tool pattern, and it enables agents

to work together in a hierarchical organization fashion. Typically, you have one agent that controls

the workflow (often called the orchestrator) and a set of agents that are called to fulfill certain

tasks (often called the workers).

Worker agents function as modular components, each with its own system prompts, reasoning

process, and even tools. From the orchestrator’s perspective, they are invoked like any other

traditional tool. It would be the same if the orchestrator is calling a Python custom tool, an OpenAI-

hosted tool, or an agent.

Note

There are inherent restrictions to what code can be executed in the container, such

as quotas on processing, which Python libraries can be installed, and so on. To see

a full list, go to https://platform.openai.com/docs/guides/tools-code-

interpreter.

https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter

Agent Tools and MCPs92

Handoff versus agent-as-tool patterns
Note that the agent-as-tool pattern is fundamentally different from handoffs, which we will cover

in detail in a later chapter. In the handoff pattern, one agent fully delegates control to another

agent, as shown in Figure 4.7. Once the handoff occurs, the second agent takes over the task or

conversation completely until the task is complete or it chooses to hand control back:

Figure 4.7: Agent-as-tool pattern

In the agent-as-tool pattern, the orchestrating agent retains full control of the overall workflow

and simply calls another agent to handle a specific subtask, as shown in Figure 4.8:

Figure 4.8: Handoff pattern

A good example is when you call a customer service line. The customer service manager can either

transfer you to another department to continue the conversation (this would be the handoff

pattern) or put you on hold while they ask for/gather necessary information from their coworkers,

and then get back on the phone with you when they are done (this would be the agent-as-tool

pattern).

Both orchestration patterns are fully supported in the SDK and can be combined for more complex

workflows. The key trade-off that we need to consider is control: handoff offers modular autonomy,

while agent-as-tool favors a more centralized coordination.

Typically, you choose the handoff pattern in the following situations:

•	 It fits well into another agent’s domain

•	 The worker agent should own the entire user interaction for that segment

•	 Tight oversight of the intermediate steps is not needed

Chapter 4 93

By contrast, you should choose the agent-as-tool pattern in the following situations:

•	 Maintaining central control of the logic and conversation is important

•	 Input from multiple workers needs to be synthesized into one answer

•	 Maximum visibility/oversight is needed

Both approaches have their own strengths and drawbacks, and choosing the right one depends

on how much control, modularity, and visibility your agent workflow requires.

Functionality
The SDK enables you to convert any agent into a tool using the as_tool() function, which returns

a FunctionTool object that can be added to an existing agent’s tool argument. When calling

as_tool(), you need to specify the name and description, similar to earlier in this chapter when

we were building custom tool functions. The name and description are used by the orchestrator

agent to determine whether that tool should be called (and so, making the name and description

descriptive is very important).

Let’s go through an example. Create a new Python script called agents_as_tool.py and run the

following code:

from agents import Agent, Runner, WebSearchTool, CodeInterpreterTool

from agents.tool import CodeInterpreter

Instantiate the tool

websearchtool = WebSearchTool()

Create a worker agent

location_agent = Agent(

 name="LocationAgent",

 instructions="You are an AI agent that searches the web and gets
latitude and longitude numbers for a particular city.",

 tools=[websearchtool]

)

Instantiate the tool

tool_config = CodeInterpreter(

 container={"type":"auto"},

 type="code_interpreter"

)

Agent Tools and MCPs94

codetool = CodeInterpreterTool(tool_config=tool_config)

Create another worker agent

distance_calculator_agent = Agent(

 name="DistanceCalculatorAgent",

 instructions="You are an AI agent that writes and runs Python code to
calculate the distance in KM between two latitude/longitude points.",

 tools=[codetool]

)

Create the orchestrator agent

agent = Agent(

 name="Agent",

 instructions="You are an AI agent that calculates the distance between
two locations. Use the Location Agent to get the latitude / longitude. Use
the Distance Calculator agent to calculate the distance.",

 tools=[

 location_agent.as_tool(

 tool_name="LocationAgent",

 tool_description="Returns the latitude and longitude for a
particular location"

),

 distance_calculator_agent.as_tool(

 tool_name="DistanceCalculatorAgent",

 tool_description="Calculates the distance between two
latitude/longitude points"

)]

)

result = Runner.run_sync(agent, "What's the straight-line distance between
Toronto and Vancouver?")

print(result.final_output)

Chapter 4 95

Let’s walk through this code step by step.

We first create two agents:

•	 LocationAgent, whose sole purpose is to retrieve latitude and longitude values for a given

city, using WebSearchTool

•	 DistanceCalculatorAgent, which is equipped with CodeInterpreterTool, allowing it

to write and execute Python code to compute distances between two coordinate pairs

The important part comes when we call .as_tool() on each of these agents. This wraps each agent

as a callable tool, assigning it a tool_name argument and tool_description argument so that

the orchestrator agent can reason about when and how to call it. These names and descriptions

play a key role in the LLM’s ability to select the right worker agent for a given task, so they should

be specific and informative.

Finally, we create an orchestrator agent. Its instructions guide it to use the worker agent (now

wrapped as tools) to complete a larger goal: calculating the distance between two cities. When we

run this agent with the input query, What’s the straight-line distance between Toronto and Vancouver?,

the system chains the tool calls behind the scenes. First, LocationAgent is invoked twice to

fetch coordinates for each city. Then, DistanceCalculatorAgent processes those coordinates to

compute the final result.

This final_output object contains the correct answer:

The straight-line distance between Toronto and Vancouver is approximately
3363.64 kilometers.

Agent Tools and MCPs96

We can also see in the Traces module that it was derived by using the location agent as a tool

twice (once for Toronto and once for Vancouver), and then using the distance calculator agent:

Figure 4.9: Workflow trace in the Traces module

In conclusion, the agent-as-tool pattern enables you to build composable, hierarchical systems

where specialized agents tackle distinct subtasks, all coordinated by a central orchestrator. This

model encourages modularity, reusability, and better oversight over complex workflows.

Now that we’ve explored how to compose agents using the “agent-as-tool” pattern, let’s shift focus

to a broader interoperability challenge: how agents and tools can communicate across frameworks

using a shared standard. This is where the Model Context Protocol (MCP) comes into play.

Chapter 4 97

MCP
Agentic AI development is still new but is significantly gaining in popularity. As developers

started to build more agents and tools, there was no standardized way to connect tools to agents;

every SDK did it differently. We are already familiar with how the Agents SDK connects tools to

agents, but this differs significantly from other frameworks such as LangGraph or CrewAI. This

was difficult – if you built an amazing tool in the Agents SDK, it was difficult to port it to other

frameworks. Additionally, it did not make sense to develop a tool that did X, if someone else had

already created a tool that did X for another framework.

As a result, a standard protocol was needed to define the connection between tools and agents

that could apply to all SDKs, and MCP was born.

What is MCP?
MCP is a standardized protocol that defines how an AI agent can discover and call tools hosted

locally or on external servers. Think of MCP as a universal adapter or a USB-C port for AI agents

and their tools. Following this standard enables a tool provider to develop an MCP server that

can plug into any MCP-compatible host (such as an agent built with the Agents SDK), ensuring

interoperability across different models and frameworks.

MCP’s main strength lies in fostering a plug-and-play ecosystem for tools. A developer can

implement an MCP server for their database once, and it becomes instantly compatible with

agents from OpenAI, Anthropic, or any other provider that supports the protocol. No additional

integration is required.

Adding an MCP server as a tool
The Agents SDK makes it easy to consume tools from an MCP server. You simply instantiate a

connection to the server and pass it to your agent as a tool. The Agents SDK will automatically

handle the connection, query the server for its available tools, and make them available to the

agent.

Note

MCP is an expansive topic. A whole book could be written on just MCP. While we will

show how to connect to an MCP server using the Agents SDK, we won’t be covering

the full protocol in depth. That is beyond the scope of this book.

Agent Tools and MCPs98

Let’s go through an example. Create a new Python script called mcp_tool.py and run the following

code:

from agents import Agent, Runner, HostedMCPTool

from agents.tool import Mcp

Create the tool

tool_config = Mcp(

 server_label="CryptocurrencyPriceFetcher",

 server_url="https://mcp.api.coingecko.com/sse",

 type="mcp",

 require_approval="never"

)

mcp_tool = HostedMCPTool(tool_config=tool_config)

Create the agent

agent = Agent(

 name="Crypto Agent",

 instructions="You are an AI agent that returns crypto prices.",

 tools=[mcp_tool]

)

result = Runner.run_sync(agent, "What's the price of bitcoin?")

print(result.final_output)

Note

When working with external MCP servers, it’s important to consider the security

and privacy implications. Authentication should be enforced to ensure that only

authorized agents can access the tools provided, and rate limiting can help pro-

tect both your system and the MCP server from misuse or accidental overload. You

should also be mindful of data exposure (i.e., sending sensitive inputs or receiving

unfiltered outputs from external MCP tools can introduce risks if proper safeguards

aren’t in place).

Chapter 4 99

In the code, instead of creating our own tool that makes an API call and returns the latest Bitcoin

price, we are instead leveraging the MCP server built by Coin Gecko that contains all the tools

that we would ever need. We don’t need to create a custom function; instead, we just leverage

the one that Coin Gecko has already created.

Let’s break it down. The Mcp configuration specifies the label for the tool, the server’s URL, the

tool type ("mcp"), and a require_approval setting that tells the agent whether to prompt for

human approval before using the tool. In this example, we’ve set require_approval to "never",

meaning the agent can call the tool autonomously. The server_url argument is the endpoint of

the MCP server for Coin Gecko, which you can find on their website. This URL should point to a

valid MCP-compliant endpoint that serves tool definitions in real time.

When we define an agent, we add the MCP tool to its list of tool arguments. Since the MCP server

may contain multiple tools technically (e.g., one for Bitcoin prices, another for Ethereum, etc.),

the agent can reason over the available options and select the right tool for the task.

When we run the agent, behind the scenes, the agent sends the user’s message to the LLM, and

the LLM evaluates the message and decides to call the tool from the MCP server. The SDK handles

calling the tool with the right arguments and passing the result back to the LLM, which then

returns a final answer.

In short, integrating MCP with the Agents SDK unlocks powerful new capabilities by enabling

agents to seamlessly access a standardized ecosystem of external tools and services.

Summary
In this chapter, we gave agents the ability to perform real work by connecting them to tools

(custom, hosted, agents, and external servers). We started with custom Python tools using @

function_tool, showing how to register and describe tools so the agent can understand and

use them. We explored how we can impact tool decision logic through the tool_choice and

tool_use_behavior parameters.

Note

The actual tool logic is not executed on your local machine. The request is sent to

the MCP server, which hosts and runs the tool remotely. No processing happens on

your machine, similar to when you make an API call.

Agent Tools and MCPs100

We then built several real-world tools and agents, using four different paradigms: custom tools

via Python functions, hosted tools via OpenAI modules, agents as tools, and external server tools

via MCP.

With these patterns in place, you now have everything you need to build agents that not only

understand and reason, but also take action, connect to live systems, and integrate seamlessly

with external services.

In the next chapter, we’ll explore how to manage agent knowledge and memory.

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/8Oz6Y or scan the QR code below.

https://packt.link/8Oz6Y

5
Memory and Knowledge

Now that our agents can take action using tools, it’s time to make them more intelligent in a more

human-like way by giving them memory and knowledge. In this chapter, we will explore how

to move beyond stateless interactions and give agents the ability to remember past messages,

retain important facts, and reference external information sources when generating responses.

This is a major leap forward in making agents more conversational, helpful, and context-aware.

Here is what you will learn as part of this chapter:

•	 Short-term memory: Learn how to track conversation history using message lists, loops,

and the Sessions class to build multi-turn agents that remember what was said earlier

in the session

•	 Long-term memory: Persist memory across sessions using SQLiteSession, and go further

with structured memory using function tools that store and recall key facts

•	 Training knowledge: Understand what knowledge the model already has from pretraining

and how fine-tuning modifies it

•	 Retrieved knowledge: Learn how to pull in dynamic, real-time information using tools

for both structured (database queries and API calls) and unstructured data (embeddings

and semantic search), through a process called retrieval-augmented generation

Memory and Knowledge102

Figure 5.1: Memory and knowledge patterns

By the end of this chapter, you’ll know how to make your agents smarter and be able to carry on

meaningful conversations, remember preferences, and access external data sources when needed.

Let’s get right into it.

Technical requirements
Please follow the detailed steps in Chapter 3 to set up your environment.

Throughout this book, practical examples and complete code from each chapter will be made

available via the accompanying GitHub repository at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 5 103

Working memory
As discussed previously, working memory (also called short-term memory) is the information

stored in the interaction history in the current session of the AI agent. The example we gave

previously is that working memory is what enables you to ask first, “How hot is the sun?” and

then “How big is it?”, and the agent can determine that “it” in the second request refers to the sun.

So far, all the AI agents have not passed this test; they do not have any concept of memory. In fact,

all AI agents so far have been stateless, meaning that they do not retain any information from

previous interactions. Each agent is treated as a completely new system, without any recollection

of what happened before. Stateless systems are common in most computer systems. For example,

most APIs serve as an independent and isolated transaction (it does not remember what you

have previously asked and use that to determine their next output). Stateful systems are the

opposite; they maintain information about previous interactions and use it to produce future

output. For example, your Netflix page is stateful: it remembers what you’ve previously watched

and recommends similar movies. Memory makes AI agents go from stateless systems to stateful

systems.

How do you choose between a stateless and stateful AI agent? It depends on its purpose. AI agents

that are conversational (i.e., chatbots) require multi-step input or require context within answers,

and must be stateful systems. For example, a chatbot without memory would be very frustrating

for the user. On the other hand, if the AI agent’s purpose is simple, routine, one-shot, repetitive,

and non-learning, then a stateless system is fine. Note that there is a cost to making a stateful AI

agent: the overhead of managing memory, to which half of this chapter is dedicated.

Managing inputs and responses
The most fundamental way to give an agent memory is to do it manually. Recall that an agent is

executed via the Runner class, which takes an input argument:

Runner.run_sync(agent, "How hot is the sun?")

The input argument can either be a string (which is what we have done so far) or it can be a list

of ResponseInputItem objects. A ResponseInputItem object is a standard OpenAI specification

that tracks a message. Each message has a "role" and a "content" field. If you have worked

with the OpenAI API before, then this should be familiar to you. The following is an example of

a ResponseInputItem object:

{"role": "user", "content": "How hot is the sun?"}

Memory and Knowledge104

The "role" field can take three possible values:

•	 "system": Message that acts as the overall instruction set for the LLM

•	 "user": Messages that the user has submitted, which have a lower priority than the system

message

•	 "assistant": Messages generated by the LLM

In order to provide an agent memory, we can simply add ResponseInputItem objects to a running

list and pass that list to the Runner class whenever an agent is invoked. Let’s put this to the test.

Create a new file called memory_tracking_messages_simple.py and run the following code:

from agents import Agent, Runner

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions.",

)

Create empty list (this will contain messages)

messages = []

Initial message,

messages.append({"role": "user", "content": "How hot is the sun?"})

Call agent

result = Runner.run_sync(agent, messages)

print(result.final_output)

Add response to message

messages.append({"role": "assistant", "content": result.final_output})

Add second question to message

messages.append({"role": "user", "content": "How big is it?"})

Call agent

result = Runner.run_sync(agent, messages)

print(result.final_output)

Chapter 5 105

Let’s walk through this code snippet and see how the agent can remember what the user’s first

message is when the second message is being processed. We first created an empty list called

messages, which will hold the full history of the interaction. We then append the first message

from the user asking, "How hot is the sun?". This message is passed to the Runner.run_sync()

function, and the model responds with a temperature-related answer. That answer is stored in

the result.final_output variable, which we then add back into the message history, but this

time, tagged with the "assistant" role, since it is the model’s output.

Next, we append the user’s follow-up question: "How big is it?". At this point, the message

history has three items:

•	 The original user question (How hot is the sun?)

•	 The model’s response (The sun is …)

•	 The user’s second question (How big is it?)

Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR visit https://packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure you

get the right one.

https://packtpub.com/unlock

Memory and Knowledge106

By passing this full list of messages into the Runner.run_sync() method again, the model has

access to the previous conversation and can correctly determine that it in the second question

refers to the sun from the initial message. Our response looks something like this:

First response

The Sun's temperature varies in different regions:

1. **Core**: Around 15 million degrees Celsius (27 million degrees
Fahrenheit).

2. **Surface (photosphere)**: Approximately 5,500 degrees Celsius (9,932
degrees Fahrenheit).

3. **Corona**: Ranges from 1 to 3 million degrees Celsius (1.8 to 5.4
million degrees Fahrenheit).

The core is where nuclear fusion occurs, generating the Sun's energy,
while the corona is the outer atmosphere, surprisingly much hotter than
the surface.

Second response

The Sun has a diameter of about 1.39 million kilometers (864,000 miles).
It is roughly 109 times the diameter of Earth and makes up over 99% of the
total mass of the solar system.

This pattern of maintaining and appending to a list of messages is the simplest way to create

working memory for the agent. It actually mirrors how memory works in most chat interfaces

and aligns directly with the message structure defined by the OpenAI API.

Chat conversations
We can actually make the preceding code snippet more dynamic so that the user messages are

not hardcoded and the user is able to submit multiple messages, like an actual chat conversation.

To do this, we can use the native input and while loop functionalities from Python. Create a new

file called memory_tracking_messages_simple_loop.py and run the following code:

from agents import Agent, Runner

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions.",

)

Chapter 5 107

messages = []

while True:

 question = input("You: ")

 messages.append({"role": "user", "content": question})

 result = Runner.run_sync(agent, messages)

 print("Agent: ", result.final_output)

 messages.append({"role": "assistant", "content": result.final_output})

This program will ask you for a prompt, which you can type directly into the terminal where

you’re running the Python program. It will then give you the agent’s response and ask you for a

follow-up prompt, maintaining its message history. Now, we have converted our agent from a

one-shot system to a multi-turn conversational system that can remember previous messages

(assuming it’s in the same session). We do this by adding a loop, where the following takes place

in each iteration:

•	 The user is asked for a prompt

•	 The prompt is added as a ResponseInputItem object to a running list of ResponseInputItem

objects, called messages

•	 The messages object is passed to the agent via the Runner class

•	 The model output is added as ResponseInputItem to messages

This loop continues on forever until an error is encountered or until the user force-exits the

program (by clicking Ctrl + C). Here is an example conversation that proves that the agent has

memory (as it remembered my name from the first conversation):

You: My name is Henry

Agent: Nice to meet you, Henry! How can I assist you today?

You: What's my name?

Agent: Your name is Henry.

Note

You might be wondering, what happens if the messages list keeps growing forever?

Wouldn’t that eventually become a problem? That’s a great question, and yes, mes-

sage history growth is something to keep in mind. Don’t worry, we’ll cover strategies

for handling that later in this chapter.

Memory and Knowledge108

The SDK also makes manual conversation management easier by providing a function that returns

the list of messages from a result object. The result.to_input_list() function returns a list

of ResponseInputItem objects to which you can then add additional ResponseInputItem objects.

This makes the code a bit neater (but the functionality still works the same way), such as the

following:

from agents import Agent, Runner

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions.",

)

messages = []

while True:

 question = input("You: ")

 messages.append({"role": "user", "content": question})

 result = Runner.run_sync(agent, messages)

 print("Agent: ", result.final_output)

 messages = result.to_input_list()

In practice, this technique forms the foundation of stateful conversational agents. From here, more

advanced memory techniques can be layered on top to persist memory across sessions, extract

structured data, adjust memory, and handle large conversations, but it all starts with tracking

the conversation history.

Conversation management with Sessions
OpenAI Agents SDK provides a primitive for conversation management called Sessions. It acts as

a class that enables you to automatically store, recall, and edit messages in a conversation. This

means you don’t have to manually call the .to_input_list() function or manage the conversation

message manually; the SDK takes care of it. The Sessions class needs one input: a string that

represents a unique identifier for the session called session_id.

Chapter 5 109

Let’s modify the previous script we had and add sessions to it. Create a new file called

conversations_with_sessions.py and run the following code:

from agents import Agent, Runner, SQLiteSession

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions.",

)

Create a session

session = SQLiteSession("first_session")

while True:

 question = input("You: ")

 result = Runner.run_sync(agent, question, session=session)

 print("Agent: ", result.final_output)

After running this code (as you can see, it’s a lot simpler), let’s try our test case again:

You: My name is Henry

Agent: Nice to meet you, Henry! How can I assist you today?

You: What's my name?

Agent: Your name is Henry.

In this case, the conversation history is managed with the Sessions class. Instead of manually

appending messages or calling .to_input_list(), the session object keeps track of the entire

interaction history behind the scenes.

Sessions can be especially useful when managing multiple users or conversations. By using a

unique session_id value for each interaction thread, agents can maintain separate memory

contexts. For example, you might generate a session_id value based on a username and a

conversation ID, ensuring that each user or conversation has its own isolated history.

This lays the groundwork for building truly stateful agents that feel more natural, responsive,

and intelligent in extended interactions.

Memory and Knowledge110

Note that SQLiteSession by default is in-memory (not persistent across process restarts). We’ll

discuss how to persist sessions to disk in the Long-term memory section. But first, we must address

the issue of managing large conversation threads, where even short-term memory has a finite

capacity.

Managing large conversation threads
Why is managing large conversation threads a problem with agents? Agents are powered by

LLMs. LLMs have a fundamental problem of finite context windows (i.e., LLMs can only receive

and process a certain number of characters, or “tokens” at one time). If a conversation continues,

simply appending every message will eventually hit this limit, at which point the prompt becomes

too large to process, and our agent will fail.

However, managing large conversation threads is important even without this technical limitation.

Long prompts and context windows can significantly slow down responses and increase cost.

Therefore, it’s important to manage the short-term memory by discarding or compressing old

information that’s less important.

In this section, we will discuss two patterns to address this: sliding message window and message

summarization.

Sliding message window
The sliding message window is the simplest and most cost-effective memory strategy. It works

by retaining only the most recent N messages from the message log, acting as a First-In, First-

Out (FIFO) queue. Older messages are dropped as new ones arrive, ensuring that the prompt

remains within the model’s context limit.

This method is ideal for agents that only need short-term memory, such as customer service

agents focused on resolving a single query thread, but it does risk forgetting important context

introduced earlier in the session. For example, if a user shares key information (such as their name,

goals, or constraints) early in the conversation, and the window size is too small, the agent may

lose this information entirely once it gets pushed out of the window.

Message summarization
A more advanced strategy is message summarization, which means instead of forgetting older

messages, this approach condenses them into a compact summary that persists throughout

the session. This allows the agent to retain key facts, decisions, or user preferences over long

conversations, actually bridging short-term and long-term memory.

Chapter 5 111

Summarization typically involves the following:

•	 Keep monitoring the size of the message history, and if it exceeds a certain threshold,

collect the oldest N messages.

•	 Pass the oldest N messages to an LLM, with a prompt that summarizes them.

•	 Replace the oldest N messages with the summarized response in the message log. Since

the summarized output is smaller than the length of the oldest N messages, this effectively

shortens the context window of the message log.

This method allows the agent to retain long-term context without exceeding token limits. Of

course, the trade-off here is significant cost and latency as each summarization task requires an

additional LLM call. In practice, many agents combine both patterns: using a sliding window

to remove old messages and a summarization chain to retain older context in compressed form.

Short-term memory is all about making the agent context-aware within a single session. With

OpenAI Agents SDK, enabling this is the most straightforward using the Sessions class. However,

there are limitations, and making that memory scalable (not exceeding context limits) requires

thoughtful strategies such as sliding windows or message summarization.

Here’s an example of a sliding window pattern:

from agents import Agent, Runner

from collections import deque

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions."

)

Sliding window size (keep only the most recent 5 messages)

WINDOW_SIZE = 5

messages = deque(maxlen=WINDOW_SIZE)

while True:

 question = input("You: ")

 messages.append({"role": "user", "content": question})

 # Run the agent with only the most recent N messages

Memory and Knowledge112

 result = Runner.run_sync(agent, list(messages))

 print("Agent:", result.final_output)

 messages.append({"role": "assistant", "content": result.final_output})

Next, we will explore long-term memory and see how an agent can retain information across

sessions or over extended periods.

Long-term memory
Long-term memory is the ability for an agent to remember pertinent details across multiple

sessions for a long period of time. This “superpower” is what enables agents to retain and recall

information across multiple sessions. It is the foundation for creating truly stateful, personalized,

and persistent AI experiences. This is sometimes dubbed the ultimate “hindrance” between an AI

agent and a human agent, as a human agent can naturally remember important facts, preferences,

or past conversations and assign them to every person, whereas an AI agent typically struggles

with this.

We discussed the difference between stateless and stateful in the context of single sessions

previously. It extends to multi-session interactions as well. An agent without long-term memory is

essentially stateless between sessions. An AI agent without long-term memory cannot remember

information such as a user’s name, past preferences, or completed tasks, even after it has been

shut down or restarted. For example, if a user tells a customer service agent, “I prefer my orders

be sent to the back door instead of the front,” and then returns a week later, a long-term memory-

enabled agent can proactively set the desired delivery method to “back door.”

The crux of enabling agents to have long-term memory is memory storage and recall. This is

the idea of storing an agent’s memory in a persistent state to be recalled later. There are many

different patterns that accomplish this, which is what we will cover in this section.

Persistent message logs
The easiest pattern to establish long-term memory is also the most intuitive: simply store the

entire contents of the message log somewhere when the agent session ends, and then recall it

when the agent restarts. The Agents SDK provides a mechanism for this using the Sessions class

we discussed previously (SQLiteSession). This class can accept not only a session ID, but also a

db_path argument, where you can input a file location on your computer, and it will automatically

save and load message logs to a SQL database on your local machine.

Chapter 5 113

Let’s go through an example. Create a new Python file called ltm_sessions.py and run the

following code:

from agents import Agent, Runner, SQLiteSession

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions.",

)

Create a session

session = SQLiteSession("first_session", db_path="messages.db")

while True:

 question = input("You: ")

 result = Runner.run_sync(agent, question, session=session)

 print("Agent: ", result.final_output)

In this case, we had added a db_path argument to the session object, which tells the Agents SDK

to store the conversation on our local machine and load the conversation again when the agent is

re-instantiated. We can test that this works by running the program, passing information through

it, exiting the program, running the program again, and seeing whether the agent remembers

the information.

Let’s run the program and provide the agent with our name:

You: Hello, I'm Henry

Agent: Hi Henry! What would you like to talk about today?

Next, let’s quit the program by clicking Ctrl + C. After that, rerun the program and let’s ask it for

my name:

You: What's my name?

Agent: You mentioned your name is Henry. How can I assist you further?

In this way, we have created an agent with long-term memory. It will also remember how you

interacted with it because it is storing your message log on your local machine and loading it every

time you start the program. You may also notice a messages.db file in the root folder of where

you run your code; this is where your message log and conversation are saved.

Memory and Knowledge114

The benefit of using the built-in session object for persistence is that it’s seamless, or in other

words, you do not have to implement your own file format or database schema for storing chats.

However, this pattern does have some obvious limitations, namely, that storing and loading full

message logs can become inefficient as the number of sessions or the length of conversations

grows. There’s also the fact that, as we discussed before, the message log may bloat so much that

the LLM can no longer process it due to context window limitations.

Additionally, storing all messages verbatim may not be the most intelligent form of long-term

memory. Often, what we want to retain is not every message, but only the key facts, decisions,

preferences, or outcomes. That’s where more structured memory architectures come into play.

Structured memory recall
Structured memory recall leverages tool-calling to solve the agent-memory problem. Specifically,

this pattern focuses on the following concepts:

•	 Instead of storing every single message, the agent has access to a tool that stores only the

important information that the user shares

•	 Instead of loading every single message, the agent has access to a tool that retrieves and

loads only the relevant piece of information needed

In this way, the agent’s prompt and message log for a session stays clean, but if the model determines

that it should consult the long-term memory (for example, the user asks about something

mentioned “earlier” or in a past session), it can call that function to fetch that relevant information.

Let’s go through an example. Create a new Python file called ltm_structured_memory_call.py.

First, we will initialize the memory file. Here we check whether a JSON file already exists. If not,

we create one with a default structure:

from agents import Agent, Runner, function_tool

import os

import json

Create JSON file if it does not exist

FILENAME = 'memory.json'

memory_default = {

 "user_profile": [],

 "order_preferences": [],

 "other": []

}

Chapter 5 115

if not os.path.exists(FILENAME):

 with open(FILENAME, 'w') as f:

 json.dump(memory_default, f, indent=4)

 print(f"Created '{FILENAME}' with default data.")

else:

 print(f"'{FILENAME}' already exists.")

Next, we will define the tool to save a memory piece. This function allows the agent to store

important facts in the JSON file:

@function_tool

def save_memory(memory_type: str, memory: str) -> str:

 """

 Saves a memory to a memory store.

 Args:

 memory_type: the type of memory to store. Choose between user_
profile, order_preferences, or other.

 memory: the memory to save

 """

 with open(FILENAME, 'r') as f:

 data = json.load(f)

 data[memory_type].append(memory)

 with open(FILENAME, 'w') as f:

 json.dump(data, f, indent=4)

 print(f"Memory ({memory}) saved")

 return f"Memory ({memory}) saved"

We will also create a function to load memory. This function retrieves relevant facts from the

JSON memory store:

@function_tool

def load_memory(memory_type: str) -> str:

 """

 Loads a set of memory from a memory store.

 Args:

 memory_type: the type of memory to load. Choose between user_
profile, order_preferences, or other.

Memory and Knowledge116

 """

 with open(FILENAME, 'r') as f:

 data = json.load(f)

 return "|".join(data[memory_type])

Finally, we create the agent, give it access to the tools, and run an interactive loop:

Create the agent

agent = Agent(

 name="QuestionAnswer",

 instructions="You are an AI agent that answers questions. You have
access to two tools that enable you to save memories and load memories.
Save memories when you learn an important fact. Load memories when
something is asked for about the user.",

 tools=[save_memory, load_memory]

)

while True:

 question = input("You: ")

 result = Runner.run_sync(agent, question)

 print("Agent: ", result.final_output)

Let’s break down what’s happening in this code, starting with the two function tools that save

and load memory.

The save_memory function allows the agent to store important facts under specific categories,

such as user_profile or order_preferences. This function writes to a local memory.json

file, appending the new piece of information to the relevant section. For instance, if the user

says, “I prefer front-door deliveries,” the agent can call save_memory("user_profile", "Prefers

deliveries through the front door"), and that fact will be added to the persistent storage. The

persistent storage in this case is simply a local JSON file, but it could just as easily be a database.

On the other hand, the load_memory function is designed to retrieve previously stored facts. When

the user references a preference or detail from an earlier conversation, perhaps asking, “What are

my delivery preferences?”, the agent can call load_memory("order_preferences ") to fetch and

summarize the relevant stored facts from that category.

Chapter 5 117

These functions give the agent a structured and lightweight mechanism for handling long-term

memory. Rather than storing full message transcripts, the agent only retains distilled insights

that are important and reusable. This is much more scalable than keeping every single message

log. It also works how a human thinks about memory. Imagine if you had a conversation with

your friend and they told you they like to eat sushi. In that case, you don’t simply remember the

whole transcript of the conversation. Instead, you just “log” the important information that they

like sushi, and “store” it in your memory.

Let’s try it out with an example. After running the code, let’s type in the following:

You: I like to have orders sent to the office

Memory (User prefers orders to be sent to the office.) saved

Agent: Got it! I'll remember that you prefer to have orders sent to the
office.

The agent, recognizing this as a useful preference, will call the save_memory tool. You can even

see this if you open memory.json:

{

 "user_profile": [

],

 "order_preferences": [

 "User prefers orders to be sent to the office."

],

 "other": []

}

Now, let’s quit the current session and open a new session by running the preceding Python

program again, and then asking the agent for our preference:

You: Where do I like my orders sent?

Agent: You like your orders sent to the office.

In this case, the agent called the load_memory tool to retrieve all the memories under order_

preferences. It finds the relevant information and then provides the correct response.

This structured approach to long-term memory is more scalable, semantically precise, and avoids

the pitfalls of exceeding context window limitations. It also sets the foundation for more advanced

memory systems, where facts can be embedded and indexed for semantic search, or tagged with

metadata such as timestamps and source credibility.

Memory and Knowledge118

As you build more sophisticated agents, you’ll likely want to combine these two long-term memory

patterns (persistent message logs and structured memory recall), and OpenAI Agents SDK is

flexible enough to support both at the same time.

Training knowledge
As discussed in Chapter 1, training knowledge refers to information that is inherently stored in the

model through its training data. Every LLM begins with a vast repository of inherent knowledge

derived from the massive datasets (typically, a large corpus of internet text) on which it was

initially trained. The benefit of an LLM having internal knowledge is that the knowledge itself

has the following advantages:

•	 It is quickly retrievable: Since the inherent knowledge is “baked” into the model weights,

the model can retrieve the information very quickly and is typically limited only by the

LLM’s compute speed

•	 It has a wide coverage: Since the training data is vast (the corpus of the internet), the

inherent knowledge can cover lots of topics in fairly great detail

The process of changing the model’s inherent knowledge is called fine-tuning. Unlike prompting

or retrieval-based techniques that guide a model’s existing knowledge, fine-tuning directly

reshapes the model by retraining it on a carefully selected dataset. This process updates the

model’s weights, allowing it to adopt new terminology, patterns, or behaviors that it couldn’t

previously handle well. The result is a version of the model that’s more specialized and more

accurate for a specific domain or task.

Note

The structured memory pattern that we have implemented here is simple and effec-

tive for “lightweight” scenarios. However, as your agent begins to accumulate more

facts over time (or if you need to support fuzzy, semantically rich memory retrieval),

this basic key-value approach may become limiting. That’s where vector databases

and semantic embeddings come in.

Rather than storing facts as raw text entries in a JSON file, you can represent each

memory as a vector embedding, which can be stored in a vector store and then se-

mantically searched. We discuss how this concept works later in the chapter.

Chapter 5 119

Let’s take the medical field as an example. A general-purpose LLM such as GPT-4o may understand

broad health-related topics, but will likely fall short when asked to interpret complex reports or

suggest treatment protocols based on nuanced guidelines. By fine-tuning the model on a dataset

of, for example, structured patient records and doctor notes, we can create a more tailored model

that is able to answer more nuanced health-related questions.

Fine-tuning is most appropriate in fields such as medicine, where domain expertise is essential

and where accuracy directly impacts outcomes. However, it has some severe limitations and

disadvantages:

•	 Computationally intensive (and expensive): Fine-tuning requires large-scale compute

resources and GPU time, particularly when working with high-capacity models. There

are some fine-tuning-as-a-service options out there, but even they can be prohibitively

expensive (typically starting at $10,000 to train the model, and that does not include

costs to host the model).

•	 Inflexible: Once a model is fine-tuned, it must be maintained separately from the “base”

model. As new knowledge emerges or if a base model is updated, the whole fine-tuning

process must start over

•	 Knowledge-mixing: When fine-tuning, the knowledge that is being added in may “mix”

or counter other information that the model was originally trained on. As a result, the

model may become confused and provide contradictory statements as it seeks to prioritize

information in its training data. Technically, there is no guarantee that the LLM will

prioritize the information that it was fine-tuned on.

As a result, for many practical applications, especially those that do not demand such tight domain

control, it is often more efficient to use alternatives such as prompt engineering or retrieval-

augmented generation, which we will discuss next.

Retrieved knowledge
As discussed previously, retrieved knowledge refers to information that is retrieved in real time

from a knowledge store based on the user’s request. Unlike training knowledge, which is static

and fixed at the time the model was trained, retrieved knowledge is dynamic to the context of

the conversation. The pattern is as follows:

1.	 User asks a question that requires external knowledge.

2.	 The agent system retrieves data relevant to that question from a knowledge source. This

is achieved through a tool call, which could search a database, a piece of text, a vector

store of embedded documents, a search engine API, etc.

Memory and Knowledge120

3.	 The retrieved information is then fed into the LLM.

4.	 The LLM generates an answer that incorporates or is grounded in the retrieved information.

This incorporates external knowledge into an agent. In this context, “external” knowledge refers

to any information that is not inherently stored in the model’s training weights.

Recall that we have already created agents that leverage retrieved knowledge in Chapter 4. In

many of the example agents that we created, we used tools that retrieve relevant information for

the user. For example, here is an agent we created that retrieves the price of Bitcoin when asked:

import requests

from agents import Agent, Runner, function_tool

Create the tool

@function_tool

def get_price_of_bitcoin() -> str:

 """Get the price of Bitcoin."""

 url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin&vs_
currencies=usd"

 response = requests.get(url)

 price = response.json()["bitcoin"]["usd"]

 return f"${price:,.2f} USD."

Create the agent

crypto_agent = Agent(

 name="CryptoTracker",

 instructions="You are a crypto assistant. Use tools to get real-time
data.",

 tools=[get_price_of_bitcoin]

)

Run the agent with an example prompt

result = Runner.run_sync(crypto_agent, "What's the price of Bitcoin?")

print(result.final_output)

Here is another example where we retrieved knowledge from a database:

from agents import Agent, Runner, function_tool

from pydantic import BaseModel

from typing import List

Chapter 5 121

create a simulated database

TICKETS_DB = {

 "henry@gmail.com": [

 {"id": "TCKT-001", "issue": "Login not working",

 "status": "resolved"},

 {"id": "TCKT-002", "issue": "Password reset failed",

 "status": "open"},

],

 "tom@gmail.com": [

 {"id": "TCKT-003", "issue": "Billing error",

 "status": "in progress"},

]

}

define Pydantic model

class CustomerQuery(BaseModel):

 email: str

define the tool that does a database query

@function_tool

def get_customer_tickets(query: CustomerQuery) -> str:

 """Retrieve recent support tickets for a customer based on email."""

 tickets = TICKETS_DB.get(query.email.lower())

 if not tickets:

 return f"No tickets found for {query.email}."

 response = "\n".join(

 [f"ID: {t['id']}, Issue: {t['issue']}, Status: {t['status']}"

 for t in tickets]

)

 return f"Tickets for {query.email}:\n{response}"

create the agent

support_agent = Agent(

 name="SupportHelper",

 instructions="You are a customer support agent. Use tools to fetch
user support history when asked about their tickets.",

 tools=[get_customer_tickets]

Memory and Knowledge122

)

Run the agent

result = Runner.run_sync(support_agent, "Can you show me the ticket
history for henry@gmail.com?")

print(result.final_output)

Both examples follow the pattern we laid out previously, as follows:

1.	 User initiates a request and agent retrieves information: In both examples, the user

poses a question that requires information beyond what the model was trained on. This

includes real-time data (e.g., Bitcoin price) or user-specific information (e.g., support ticket

history). The agent detects that it cannot answer the question with built-in knowledge

alone. It invokes a retrieval tool:

•	 In the CryptoTracker example, the agent uses an HTTP call to the CoinGecko API

•	 In the SupportHelper example, the agent performs a simulated database lookup

based on the user’s email address

2.	 External knowledge is retrieved: The tool retrieves the relevant information in a structured

format (e.g., a JSON response from an API, or a list of ticket records from the database),

and the retrieved data is passed back into the model.

3.	 LLM integrates the information: The LLM then uses this input to formulate a natural

language response that reflects the external knowledge.

This is the fundamental cycle of retrieval-augmented generation (RAG), a term that you may

be familiar with. As the name suggests, there are three steps in this process: retrieve (the system

retrieves relevant information based on the user’s request), augment (the system adds the

retrieved information to the LLM’s prompt), and generate (the LLM produces a response with

the added retrieved information). In fact, if you look at the previous pattern steps, it perfectly

corresponds to the three-step process within RAG.

Unlike static knowledge embedded in model weights, retrieved knowledge can be updated

independently of the model’s training, tailored to the user or situation, and is grounded in real-

world referenceable sources.

The most interesting step under RAG is the retrieve step. The method to retrieve data in the

preceding examples, using API calls or database queries, works well for structured information,

such as cryptocurrency prices or customer profile information. However, how do we solve the

retrieve problem when data is unstructured text, such as a set of documents on a SharePoint team

site? This is where embeddings, semantic searches, and vector stores enter the chat.

Chapter 5 123

Unstructured data

First, let’s define our terminology.

Embeddings are numerical representations of text. Think of it as a secret language whose syntax is

a list of numbers and that only machines can understand. These embeddings capture the essence

of words, sentences, and even entire documents. For example, the embeddings of the following

sentences are listed alongside (this is purely illustrative):

Sentence Embedding

I like apples [3432, 75, 32, …, 76, 980]

I like bananas [85, 1, 4, …, 695, 47]

This is very difficult [5, 596, 1254, …, 7, 1]

This is like fitting a square peg into a round hole [5, 4, 365, …, 748, 9]

Table 5.1: Example embeddings

Since embeddings capture the “meaning” or “essence” of text, two pieces of text that are about the

same topic or have similar meaning will produce vectors that are very similar. For example, the

embedding of I like apples will be more similar to the embedding of I like bananas than to something

random, such as All legislative Powers herein granted shall be vested in a Congress of the United States,

which shall consist of a Senate and House of Representatives. This is where semantic search comes in.

Note

Before we proceed, note that we will go through a simplified overview of this topic

instead of discussing the deep and complex math concepts that sit behind it. To

read more about how embeddings work from a more detailed point of view, refer

to this book: https://www.packtpub.com/en-mx/product/vector-search-

for-practitioners-with-elastic-9781805121022/chapter/chapter-
1-introduction-to-vectors-and-embeddings-2/section/chapter-1-
introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmB

OoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide.

https://www.packtpub.com/en-mx/product/vector-search-for-practitioners-with-elastic-9781805121022/chapter/chapter-1-introduction-to-vectors-and-embeddings-2/section/chapter-1-introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmBOoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide
https://www.packtpub.com/en-mx/product/vector-search-for-practitioners-with-elastic-9781805121022/chapter/chapter-1-introduction-to-vectors-and-embeddings-2/section/chapter-1-introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmBOoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide
https://www.packtpub.com/en-mx/product/vector-search-for-practitioners-with-elastic-9781805121022/chapter/chapter-1-introduction-to-vectors-and-embeddings-2/section/chapter-1-introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmBOoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide
https://www.packtpub.com/en-mx/product/vector-search-for-practitioners-with-elastic-9781805121022/chapter/chapter-1-introduction-to-vectors-and-embeddings-2/section/chapter-1-introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmBOoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide
https://www.packtpub.com/en-mx/product/vector-search-for-practitioners-with-elastic-9781805121022/chapter/chapter-1-introduction-to-vectors-and-embeddings-2/section/chapter-1-introduction-to-vectors-and-embeddings-ch02lvl1sec02?srsltid=AfmBOoqKY6Vgqv9_MDNW5p4mDEXQBdQXQWFt9fRFM63RMebJWEWx8ide

Memory and Knowledge124

Semantic search is the process of comparing two pieces of text by using their semantic meaning (or,

in other words, comparing their embeddings) rather than comparing keywords. We compare two

embeddings by calculating the distance between them in vector space, which is called the cosine

similarity. Cosine similarity measures the cosine of the angle between two vectors, resulting in

a number between 0 and 1.

The math does not matter here; the implication is that the higher the cosine similarity, the more

closely the two texts are semantically related:

•	 Cosine similarity close to 1: The texts are very similar or have similar context or meaning

•	 Cosine similarity close to 0: The texts are unrelated

Here is the cosine similarity between the embeddings of different pieces of text:

Test Base text Comparison text
Cosine similarity of

embeddings

1 I like apples I like bananas 0.90

All legislative Powers herein granted shall

be vested in a Congress of the United States,

which shall consist of a Senate and House of

Representatives

0.71

2
This is very

difficult
I’m fitting a square peg into a round hole 0.88

All legislative Powers herein granted shall

be vested in a Congress of the United States,

which shall consist of a Senate and House of

Representatives

0.64

Table 5.2: Table of cosine similarities between embeddings of different pieces of text

In this table, you can see that with cosine similarity, the text I like apples is more semantically

similar to the text I like bananas than to the excerpt from the US Constitution. This is also the

case with This is very difficult and I’m fitting a square peg into a round hole. In this example, these

two pieces of text share no keywords, but they are semantically similar and, as a result, have very

high cosine similarity scores.

Chapter 5 125

Finally, we have vector stores, which are simply a database that is optimized to hold pieces of text

and their embeddings. A simple database may hold a tabular-like structure of data, whereas a

vector store holds these large embedding vectors. Vector stores also have another special property:

When a new document is added to a vector store, the database automatically chunks the text

into smaller segments, generates embeddings for each chunk, and indexes them (i.e., stores them

with a dictionary that supports fast retrieval) for fast similarity search. This chunk and index step

is needed to enable semantic search. Each chunk typically contains a few hundred tokens of text

and is embedded using a dedicated model.

Now that we understand the terminology, let’s discuss how this all comes together when

performing a RAG model on unstructured data: document ingestion and retrieval.

Document ingestion
Before we can retrieve anything, we first need to prepare our knowledge base. This involves

transforming raw text documents into a format suitable for semantic search using a vector store.

The ingestion process typically looks like the following:

1.	 Chunking: The raw document is split into smaller segments (or “chunks”). This ensures

that each chunk is small enough to be embedded and later injected into the prompt if

retrieved.

2.	 Generate embeddings: Each chunk is passed through an embedding model to produce

its corresponding vector.

3.	 Store in a vector store: These embeddings, along with the associated chunk text, are

stored in a vector store, which is indexed.

At this point, the vector store holds all embeddings of our unstructured documents. Note that

this step only needs to occur once for each new set of documents.

Retrieval
Once the documents are ingested, we have what we need to perform the retrieve step for

unstructured data in RAG. The process of dynamically retrieving data based on the user’s query

works like the following:

1.	 Embed the query: When a user submits a question to the agent, the system first converts

the query into an embedding using the same embedding model used during ingestion

2.	 Perform a semantic search: The vector store performs a semantic similarity search,

comparing the query embedding to the embeddings of the chunks of text, using cosine

similarity. This step typically returns the top-N most semantically relevant chunks, based

on cosine similarity scores.

Memory and Knowledge126

After that, the augment and generate steps take over, as described before. The only difference is that

in the retrieve step, the output is semantically similar chunks of text rather than a cryptocurrency

price from an API call or an order status from a database query.

Using vector stores and FileSearchTool in the Agents SDK
Thankfully, OpenAI Agents SDK automates the RAG process for unstructured text, for both the

document ingestion and retrieval parts, so that you do not need to do it manually. Let’s go through

an example, first by creating a vector store:

1.	 Go to the OpenAI platform at https://platform.openai.com/ and log in. Ensure you log

in using the same account you used when generating the API key.

2.	 Select Dashboard from the top right, then select Storage, and then toggle to Vector stores.

Figure 5.2: Storage menu in OpenAI Dashboard

3.	 Select Create to create a new vector store. Type in a vector store name such as

USConstitution.

4.	 Scroll down and add a file to the vector store by selecting + Add files.

5.	 Upload the USConstitution.txt file (which can be found in the repository under Chapter

5). Give it the name USConstitution.txt and select user_data for Purpose. Then, select

Attach.

6.	 The TXT we uploaded has now been successfully added to our new vector store, and all

the related operations to enable RAG (such as producing embeddings, indexing, etc.) are

complete.

7.	 Copy and save the vector store ID for the new vector store that you just created.

https://platform.openai.com/

Chapter 5 127

Now that we have created a vector store, let’s use the Agents SDK for retrieval through

FileSearchTool, which we covered in detail in the previous chapter. As a reminder, the class takes,

as input, a list of vector store IDs that it automatically searches and retrieves the correct chunk,

and then passes it to the LLM for augmentation. Using the vector store we built in the previous

section, we can build an agent that answers questions by referencing the USConstitution file.

Create a new Python file called us_constitution_agent.py and run the following code:

from agents import Agent, Runner, FileSearchTool, SQLiteSession

Instantiate the tool

filesearchtool = FileSearchTool(

 vector_store_ids=['vs_687ed4bb479c81919b530ab152f373d8']

) # replace with your own vector store ID

Create an agent

agent = Agent(

 name="USConstitutionTool",

 instructions="You are an AI agent that answers questions from the
listed vector store, which has the US Constitution. Answer in one
sentence.",

 tools=[filesearchtool]

)

Create a session

session = SQLiteSession("first_session")

while True:

 question = input("You: ")

 result = Runner.run_sync(agent, question, session=session)

 print("Agent: ", result.final_output)

After running this program, you can ask any question, and the agent will perform RAG on the

vector store it has been given to answer the question, as in this example:

You: How old do senators need to be?

Agent: Senators must be at least 30 years old.

Memory and Knowledge128

In fact, you can see all the chunks that the RAG search has returned by going to the Traces module

for this agent run:

Figure 5.3: OpenAI Dashboard logs

In this way, the Agents SDK automates the document ingestion and retrieval process, enabling

you to add retrieved knowledge capabilities to your agent with a few lines of code. However, it’s

still useful to know what is happening behind the scenes so that you can understand the process

and its limitations.

Limitations
Adding retrieved knowledge to your agent has certain limitations and pitfalls, especially

when unstructured data is used. Here are three of the most common ones that may occur with

unstructured data:

•	 Ambiguous questions: If a user asks, “What is your return policy?”, are they asking about

online orders, in-store returns, or a specific product? This can lead the agent to produce

incorrect answers.

•	 No relevant information found: Sometimes, the knowledge base doesn’t have the answer.

The agent may, instead, hallucinate and make something up.

•	 Conflicting or multiple sources: If the information from the retrieval step is inconsistent

(e.g., two docs say different return windows), the agent may ignore one of them.

Chapter 5 129

Overall, building any knowledge-based agent means paying attention to the preceding pitfalls

and understanding that even the best AI agents can succumb to them. As with any system that

relies on real-world information, occasional gaps, contradictions, or misinterpretations may

occur. However, with both memory and knowledge in place, we now have an agent that is far

more capable: it remembers context and can pull in outside facts, making it a powerful agent.

Summary
In this chapter, we equipped agents with two useful skill sets to make them more intelligent:

memory and knowledge.

We started by implementing short-term memory, manually tracking message history, and using

the Sessions class to support multi-turn conversations. We addressed the challenge of growing

context windows by introducing the sliding message window and message summarization

techniques.

Next, we explored long-term memory. We made agent memory persistent across sessions using

SQLiteSession with a file-backed database, and introduced structured memory recall through

tool-calling. This approach enabled agents to store only the most relevant facts, reducing memory

bloat while increasing recall precision.

We then looked at two distinct types of model knowledge:

•	 Training knowledge, which is the static information “baked into” the model during its

initial training.

•	 Retrieved knowledge, which is the dynamic, context-specific data fetched at runtime

via tool calls. We explored the RAG pattern, where agents pull external data from APIs,

databases, or knowledge stores, and feed it into the LLM to produce informed responses.

With these patterns, your agents can now hold memory, retain user-specific context, and pull

in relevant knowledge as needed, bringing them one step closer to true usefulness in real-world

applications.

In the next chapter, we’ll shift focus to multi-agent systems, where multiple specialized agents

can collaborate to complete more complex tasks.

Memory and Knowledge130

Unlock this book’s exclusive benefits now
Scan this QR code or go to https://packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

https://packtpub.com/unlock

6
Multi-Agent Systems and
Handoffs

There are certain tasks that an individual human cannot complete themselves. Instead, an

organization of humans (i.e., a team) is needed. Think about any large company. The reason

why these big enterprises can complete their objectives is because of an organization of different

specialized human beings working together. In the same way, a one-agent system can only go so

far. A multi-agent system, however, can do anything.

While a single agent can be highly capable, it has natural limitations. A lone agent often struggles

when problems span multiple domains, require diverse expertise, or need parallel processing.

For example, a customer support agent might handle simple inquiries well, but it may fall short

when the task also involves financial analysis, legal reasoning, or technical troubleshooting. By

distributing responsibilities across multiple specialized agents, you can achieve higher accuracy,

scalability, and resilience than any single agent could provide.

In this chapter, we’ll explore how to build multi-agent systems, which are systems that coordinate

multiple agents working together. Whether you’re building a simple router or a complex

organizational hierarchy, understanding how agents can interact, delegate, and collaborate is

key to unlocking the full potential of agents. OpenAI Agents SDK contains a key primitive to

enable multi-agent systems: the handoff.

Multi-Agent Systems and Handoffs132

Here is what you will learn as part of this chapter:

•	 Orchestration types: We’ll begin by comparing two multi-agent orchestration strategies—

deterministic (hardcoded) and dynamic (system-driven)—and walk through examples

of each

•	 Handoffs: You’ll learn how to use the handoffs feature in the Agents SDK to transfer control

from one agent to another, allowing agents to delegate tasks while maintaining context

•	 Multi-agent patterns: Finally, we’ll explore architectural patterns for multi-agent systems

(centralized, decentralized, hierarchical, and swarm) and show how to implement each

using the SDK

By the end of this chapter, you’ll have learned how to design and implement multi-agent systems

that mirror real-world teams.

Technical requirements
Follow the detailed steps in Chapter 3 to set up your environment.

Throughout this book, practical examples and complete code from each chapter will be made

available via the accompanying GitHub repository: https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to them as needed while progressing through the chapters.

Multi-agent orchestrations
When building systems that use multiple agents, one of the key decisions is figuring out how to

manage the flow of information and tasks between those agents. Broadly, there are two strategies

you can take:

•	 Deterministic orchestration: This is where you write out the logic yourself and explicitly

control how agents interact; see Figure 6.1:

Figure 6.1: Deterministic orchestration

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 6 133

•	 Dynamic orchestration: This is where you delegate the flow decisions to another system

(such as an LLM), enabling the system to adjust its behavior on the fly; refer to Figure 6.2:

Figure 6.2: Dynamic orchestration

In this section, we will discuss both approaches and the benefits/drawbacks of each one. It is

worth noting that many orchestrations actually involve a combination of both approaches. In

an agentic system, you may want some parts of it to be explicitly deterministic to have greater

control and autonomy, whereas you may want other areas to be more dynamic and to handle

ambiguity better.

Deterministic orchestration
Deterministic orchestration is where the interaction flow between different agents is hardcoded

(or deterministic). This approach is all about keeping control over how and when your agents run.

In this setup, you can define the exact workflow ahead of time, coding in the order and the rules

that govern which agents handle which tasks. A good analogy is a well-choreographed dance,

with every step planned in advance. There is no improvising, and the agent flow does not deviate

from the script you’ve given them.

The primary strength of deterministic orchestration is predictability. The agent flow will always

unfold the same way for the same input, making it easy to test, audit, and debug. It is also

straightforward to measure costs and runtime since you know exactly how many agent calls

your workflow will make. Deterministic patterns are especially useful in systems where stable,

repeatable results are a must, and where you need confidence that nothing unexpected happens.

The main drawback, as with all deterministic systems, is flexibility. We discussed this in Chapter

1, but deterministic orchestration patterns are not able to adapt to requests or situations that

are not explicitly defined in the agent control logic. If you discover the need for a new step or

want to handle a new kind of request, you’ll need to change and redeploy your agent logic. As

your workflow grows more complex, maintaining all those branches and pathways can become

a burden.

Multi-Agent Systems and Handoffs134

Let’s go through an example of a deterministic approach. In this example, we’ll walk through a

deterministic orchestration pattern, where requests are routed between two customer service

agents using hardcoded logic. This will show you how predictable, rule-based delegation works,

and why it can be both powerful and limiting. Create a new Python file called deterministic_

approach.py and run the following code:

from agents import Agent, Runner

Create two agents

complaints_agent = Agent(

 name="Complaints Agent",

 instructions="Handle any customer complaints with empathy and clear
next steps."

)

inquiry_agent = Agent(

 name="General Inquiry Agent",

 instructions="Answer general questions about our services promptly."

)

Create orchestration

def orchestrate(user_message: str):

 # Deterministically delegates requests to the right customer service
agent.

 if ("complaint" in user_message.lower()

 or "problem" in user_message.lower()):

 print('Redirecting you to the Complaints agent')

 chosen_agent = complaints_agent

 else:

 print('Redirecting you to the Inquiry agent')

 chosen_agent = inquiry_agent

 result = Runner.run_sync(chosen_agent, user_message)

 return result.final_output

while True:

 question = input("You: ")

 result = orchestrate(question)

 print("Agent: ", result)

Chapter 6 135

In this code, here are the key takeaways:

•	 Deterministic orchestration gives you full control over agent flow, making it predictable

and easy to test

•	 The downside is a lack of flexibility; if a user phrases something differently than expected,

the system may misroute the request

The choice of what agent to call is managed by the orchestrate function, which contains

hardcoded logic on which agent to call based on the contents of the user’s question. This is

deterministic as this system always redirects to complaints_agent if the user’s question contains

the word complaint or problem.

 Quick tip: Enhance your coding experience with the AI Code Explainer and Quick

Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the AI assistant to explain a block of code to you.

The next-gen Packt Reader is included for free with the purchase of this book. Scan

the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

packtpub.com/unlock

Multi-Agent Systems and Handoffs136

Here’s an example interaction:

You: I have a complaint, my meal was too hot

Redirecting you to the Complaints agent

Agent: I'm really sorry to hear that your meal was too hot. I can
understand how that could be uncomfortable. To make it right, I'd like
to offer you a replacement meal at no extra charge. Additionally, please
let us know how you'd like your meal temperature adjusted in the future,
and we'll make sure it meets your preference. Let me know how else I can
assist you!

From this, it is obvious to see the weakness of this system. A user may have a complaint, but may

not actually use the word complaint or problem in their message. In that case, the user will be

redirected to the wrong agent. The following is an example of that:

You: my meal is too hot

Redirecting you to the Inquiry agent

Agent: Try eating in smaller bites.

Dynamic orchestration
Dynamic orchestration is where the interaction flow between different agents is dynamic and

is controlled autonomously by an external system (typically a human, but in this case an LLM).

This offers a more flexible orchestration pattern as the responsibility of the agent selection and

flow is given to another LLM-powered agent. In fact, in almost all cases in this book so far, the

systems we have created have used dynamic orchestration as an agent has been controlling how

to address the user’s response (whether it’s a tool call, which tool to call, etc.).

Typically, in dynamic orchestration, you have an agent that accepts incoming queries and redirects

them as appropriate. This agent reasons about each incoming request in real time, choosing which

tools, functions, or specialist agents to route to at each step. Going back to the dance analogy,

think of this as more of an improv show, where the system is able to improvise based on unheard

prompts from the audience.

The benefits and drawbacks of dynamic orchestration are the drawbacks and benefits of

deterministic orchestration, respectively. Flexibility is the main advantage. A dynamic system

can handle a much wider variety of conversational inputs without needing hardcoded logic for

every possible scenario. Agents instructed appropriately can tackle unfamiliar problems and plot

out new solutions, making this approach a good fit for customer support, sales triage, and other

open-ended tasks. However, the trade-off is predictability; you won’t always know in advance

which path the conversation will take, which may mean unpredictable answers, costs, and runtime.

Chapter 6 137

Let’s return to the previous example and make it into a dynamic orchestration. The first step is

to create a triage agent that can choose which agent to call based on the user’s query. Create a

new Python file called dynamic_approach.py and run the following code:

from agents import Agent, Runner

Create two agents

complaints_agent = Agent(

 name="Complaints Agent",

 instructions="Handle any customer complaints with empathy and clear
next steps."

)

inquiry_agent = Agent(

 name="General Inquiry Agent",

 instructions="Answer general questions about our services promptly."

)

triage_agent = Agent(

 name="Triage Agent",

 instructions="Triage the user's request and call the appropriate
agent",

 tools=[

 complaints_agent.as_tool(

 tool_name="ComplaintsAgent",

 tool_description="Introduce yourself as the Complaints agent.
Handle any customer complaints with empathy and clear next steps."

),

 inquiry_agent.as_tool(

 tool_name="GeneralInquiryAgent",

 tool_description="Introduce yourself as the General Inquiry
agent. Answer general questions about our services promptly."

)]

)

while True:

 question = input("You: ")

 result = Runner.run_sync(triage_agent, question)

 print("Agent: ", result.final_output)

Multi-Agent Systems and Handoffs138

In this case, let’s try a prompt that the triage agent should interpret as being a complaint (without

using the word complaint) and then send it to the complaints_agent accordingly:

You: My meal is too hot

Agent: I'm sorry to hear about your meal. I understand how unexpected
that can be. Would you like us to replace your meal, or can I assist you
with a refund or credit? Please let me know how you'd like to proceed.

We can verify that it was sent to the correct agent by looking at the Traces module:

Figure 6.3: Trace of the previous example

In this way, we’re able to delegate the decision-making process to the triage agent itself, rather

than hardcoding the logic in advance. The agent interprets the intent behind the user’s message

(identifying a complaint) and dynamically decides to route the message to the right agent. This

allows our system to respond to a wide range of inputs more naturally and efficiently, without

needing a rigid if-else structure to handle each possible case.

Another benefit of this type of orchestration is that it can handle multiple requests. For example,

if the user’s request is, “My meal is too hot, and how do I get my receipt?” the triage agent will

call both complaints_agent and inquiry_agent to answer that question in one go:

You: My meal is too hot, and how do I get my receipt?

Agent: Here's how I can assist you:

For the hot meal:

- Allow the meal to cool for a few minutes while we offer a complimentary
drink to help balance things out.

- If it remains an issue, we can arrange for a replacement. Let me know
your preference!

Chapter 6 139

For the receipt:

- Check your confirmation email for a copy.

- Log into your account on our website, where you can view and download it
from your order history.

If you need further help, please feel free to ask!

Here’s what it looks like in the Traces module:

Figure 6.4: Traces example of an agent workflow

All of this happens dynamically in the agent’s reasoning process rather than via fixed code branches.

We only defined the agents and their capabilities; the triage agent’s LLM did the decision-making.

Handoffs in OpenAI Agents SDK
Now that we understand the different orchestration methods with multi-agent systems, let’s

discuss the constructs that are available to us in OpenAI Agents SDK that make this possible. One

of the most important primitives that the SDK provides is handoffs.

Multi-Agent Systems and Handoffs140

A handoff is the mechanism by which an agent can pass control to another agent. It’s equivalent

to an agent saying, “I’m going to hand over this task to you. You can answer it better than I. Here

are all the details.” Handoffs are required in multi-agent systems as it’s the layer that connects

different agents together.

You can find a visual example of the two approaches in the following figure. In the agent-as-tool

pattern, the orchestrating agent retains full control of the overall workflow and simply calls

another agent to handle a specific subtask, as shown in Figure 6.5:

Figure 6.5: Agent-as-tool pattern

In the handoff pattern, one agent fully delegates control to another agent, as shown in Figure 6.6:

Figure 6.6: Handoff pattern

Note

There are generally two ways for agents to interact with each other, one of which we

have already covered in great detail within Chapter 4, called as_tool().

The as_tool() function enables an agent to become a tool that can be added to

another agent. Think of it as calling a helper function: the main agent remains in

charge, temporarily consults a sub-agent for input or a decision, and then continues

the conversation. This pattern is useful when the main agent needs specialized input

without giving up the overall flow.

Here, however, we will cover handoffs. A handoff, by contrast, is a complete trans-

fer of control from one agent to another. Here, an agent passes the conversation to

another agent, which then assumes full responsibility. The original agent no longer

participates.

Chapter 6 141

In this section, we’ll cover how to set up handoffs, how to customize their behavior, what information

gets passed during a handoff, how to filter or modify that information, and how to handle errors or

multi-step handoffs. After that, we’ll use handoffs to build different multi-agent systems.

Introduction to handoffs
Defining a handoff is very easy: when a new agent is instantiated, simply set a new argument

called handoffs. This argument can accept a list of other agents that you have previously built.

Each agent in the list can be a potential agent to which the starting agent can transfer control.

Let’s dive right in and build a multi-agent system with a handoff. We will start with the previous

example and simply change the tools argument to handoffs, and then remove the as_tool()

function we had before. Create a new Python file called basic_handoff.py and type in the

following code:

from agents import Agent, Runner

Create two agents
complaints_agent = Agent(
 name="Complaints Agent",
 instructions="Handle any customer complaints with empathy and clear
next steps."
)
inquiry_agent = Agent(
 name="General Inquiry Agent",
 instructions="Answer general questions about our services promptly."
)

Create the triage agent with handoffs
triage_agent = Agent(
 name="Triage Agent",
 instructions="Triage the user's request and call the appropriate
agent",
 handoffs=[complaints_agent, inquiry_agent]
)

while True:
 question = input("You: ")
 result = Runner.run_sync(triage_agent, question)
 print("Agent: ", result.final_output)

Multi-Agent Systems and Handoffs142

In this program, triage_agent has two agents to which it can hand off the task: complaints_agent

and inquiry_agent. An analogy is that we have created an office with three people: triage_agent

answers the door and then walks the customer over to the appropriate person based on their

question.

How does the triage agent know to which agent to hand off? Similar to the Tool primitive, the

Handoff primitive exposes the name and instructions of the sub-agents to the triage agent, so

it knows the roles of the two agents and can use that to determine whether it should hand off

to them or not.

Let’s try this out and verify that the agent is performing the handoff:

You: My meal is too hot

Agent: Hi there, I'm sorry to hear that your meal is too hot. I
understand how this can be inconvenient. May I offer a few options to help
resolve this for you? We can provide a replacement meal, or if you prefer,
offer a partial refund. Let me know which option works best for you!

If we look at the Traces module, we can confirm that triage_agent is passing the task to

complaints_agents:

Figure 6.7: Handoff from one agent to another

The Traces module shows the transfer to complaints_agent, and complaints_agent fully takes

over the task afterward.

Chapter 6 143

Multi-agent switching
Note that complaints_agent is itself an agent, and so can have its own tools and handoffs.

Currently, once complaints_agent gets control, it cannot transfer to any other agent. To fix

this, let’s go ahead and add handoffs to both complaints_agent and inquiry_agent, and allow

Runner not to call the same triage_agent every time, but the last agent that responded to the

user. This will enable us to see the power of a true dynamic multi-agent system that can easily

switch between all agents. We are also going to amend the code so that we can have a multi-turn

conversation with our agent.

Create a new Python file called multi_agent_switching.py and run the following code:

from agents import Agent, Runner, SQLiteSession, trace

Create two agents

complaints_agent = Agent(

 name="Complaints Agent",

 instructions="Introduce yourself as the complaints agent. Handle any
customer complaints with empathy and clear next steps."

)

sales_agent = Agent(

 name="Sales Agent",

 instructions="Introduce yourself as the sales agent. Answer general
questions about our services promptly."

)

Create the triage agent with handoffs

triage_agent = Agent(

 name="Triage Agent",

 instructions="Answer general questions. Triage the user's request and
call the appropriate agent",

)

Handoff all agents with each other

complaints_agent.handoffs = [sales_agent, triage_agent]

sales_agent.handoffs = [complaints_agent, triage_agent]

triage_agent.handoffs = [complaints_agent, sales_agent]

Multi-Agent Systems and Handoffs144

Create a session

session = SQLiteSession("first_session")

last_agent = triage_agent

with trace("Multi-agent system"):

 while True:

 question = input("You: ")

 result = Runner.run_sync(last_agent, question, session=session)

 print("Agent: ", result.final_output)

 last_agent = result.last_agent

Let’s examine what’s happening in the code, especially with the sections that are highlighted.

We first establish our three agents. Next, we establish mutual handoffs between all three agents.

This is key: previously, once control was passed to a secondary agent such as complaints_agent,

the conversation was locked in with that agent for the remainder of the session. Now, by explicitly

assigning .handoffs to each agent to include the others, any agent can delegate to any other,

including back to triage_agent if needed. This sets the foundation for a fully dynamic multi-

agent system.

We also introduce a persistent SQLiteSession to ensure that the conversation state is maintained

across turns, which is what we learned in the previous chapter. This enables us to build on prior

exchanges and lets agents remember where the conversation left off. Combined with the trace()

context manager, which we will deep dive into in the next chapter, we can record all interactions

for later debugging or inspection.

The last_agent variable tracks which agent was most recently active. Inside the loop, we continue

the conversation by invoking Runner.run_sync(last_agent, question, session=session).

This ensures that the agent currently handling the conversation receives the next user input,

rather than always restarting with the triage agent. Once the response is processed, we update

last_agent with result.last_agent, enabling seamless handoffs between agents as determined

by the interaction flow.

For example, let’s have the following conversation with the multi-agent system. Note that it

seamlessly switches between multiple agents based on the messages in the conversation:

You: Hi, I'm Henry

Agent: Hello Henry! How can I assist you today?

You: Transfer me to the complaints agent - My meal is too hot

Chapter 6 145

Agent: Hello Henry, I'm the complaints agent here to assist you. I
understand your meal was too hot, and I apologize for the inconvenience.
Could you tell me a bit more about the situation, so I can help resolve it
for you?

You: I have a general inquiry - how do I get my receipts?

Agent: For receipt inquiries, you typically have a few options …

Here’s what this example looks like on the Traces module:

Figure 6.8: Traces module in this example

This structure opens the door to truly dynamic multi-agent conversations where agents can not

only take turns but also intelligently decide when to pass control to each other, depending on

context. We have now created a flexible agent network that can assign the right agents for our

tasks mid-conversation.

Multi-Agent Systems and Handoffs146

Customizing handoffs
OpenAI Agents SDK enables you to customize the properties of a handoff, which can be very useful

under certain circumstances. The first thing to know is that the SDK contains a way to instantiate

a handoff object with additional properties. These properties are as follows:

•	 agent: The agent to which the handoff will occur.

•	 tool_name_override and tool_description_override: Enable you to override what

the description of the handoff is within the Traces module. As you’ve already seen, the

default is “transfer to X.”

•	 on_handoff: A function that will be triggered when the handoff is made. This is very useful

for invoking functions if a handoff occurs (such as informing the user or even for logging

purposes). The Agents SDK will also pass the conversation history to your callback function.

•	 input_type and input_filter: Enable you to refine the input expected by the handoff

(you can, for example, instruct the LLM to pass a summarized view of the conversation

so far, or trim the conversation history to the last five messages).

Let’s go through an example of a handoff customization. We’ll use a property that I most often

use, which is the on_handoff property. We’ll define a custom function that prints out when the

system is handed off to a new agent. Create a new Python file called handoff_customization.

py and run the following code:

from agents import Agent, Runner, SQLiteSession, trace, handoff

from pydantic import BaseModel

import os

Create two agents

complaints_agent = Agent(

 name="Complaints Agent",

Note

A key consideration in handoffs is determining what context gets carried over to

the new agent. By default, the SDK automatically transfers the full conversation

history up to the handoff point. This includes all user inputs, system instructions,

and the previous agent’s messages and actions (essentially everything to which the

original agent had access). From the user’s point of view, there should be no need

to repeat anything.

Chapter 6 147

 instructions="Introduce yourself as the complaints agent. Handle any
customer complaints with empathy and clear next steps."

)

sales_agent = Agent(

 name="Sales Agent",

 instructions="Introduce yourself as the sales agent. Answer general
questions about our services promptly."

)

Create the triage agent with handoffs

triage_agent = Agent(

 name="Triage Agent",

 instructions="Answer general questions. Triage the user's request and
call the appropriate agent",

)

In this first section, we set up three agents: one for complaints, one for sales, and a triage agent

that decides where to route a request. So far, this should feel familiar—it’s the same setup you’ve

seen earlier, but now we’re preparing these agents for customized handoffs.

Next, let’s define a model and logging function, and then create the handoff objects:

class NameOfAgentToBeHandedOff(BaseModel):

 name_of_agents_to_be_handed_off: str

Create logging function

def log(ctx, name_of_agent):

 msg = f"The system has transferred you to another agent: {name_of_
agent.name_of_agents_to_be_handed_off}"

 print(msg)

Create custom handoff

complaints_handoff = handoff(agent=complaints_agent, on_handoff=log,
input_type=NameOfAgentToBeHandedOff)

sales_handoff = handoff(agent=sales_agent, on_handoff=log, input_
type=NameOfAgentToBeHandedOff)

triage_handoff = handoff(agent=triage_agent, on_handoff=log, input_
type=NameOfAgentToBeHandedOff)

Multi-Agent Systems and Handoffs148

Handoff all agents with each other

complaints_agent.handoffs = [sales_handoff, triage_handoff]

sales_agent.handoffs = [complaints_handoff, triage_handoff]

triage_agent.handoffs = [complaints_handoff, sales_handoff]

Create a session

session = SQLiteSession("first_session")

last_agent = triage_agent

with trace("Multi-agent system"):

 while True:

 question = input("You: ")

 result = Runner.run_sync(last_agent, question, session=session)

 print("Agent: ", result.final_output)

 last_agent = result.last_agent

Let’s walk through the changes we’ve made to this program from the previous section.

The first thing to notice is that instead of assigning agents directly to .handoffs, we now construct

each handoff using the handoff() function from the SDK. This allows us to customize the behavior

of the handoff in more advanced ways. In our case, we’re attaching a logging function to each

handoff using the on_handoff argument.

We define a simple log() function that prints out a message every time a handoff occurs. It

receives the handoff context (ctx) and a model input (name_of_agent), and then prints a message

indicating which agent the conversation is being transferred to. This gives us an effective way to

track and debug agent transitions in real time.

To ensure our logging function receives structured input, we define a NameOfAgentToBeHandedOff

class using Pydantic. This sets a clear expectation for the type of input data the handoff should

use, and allows the SDK to validate and pass relevant fields into our log() function when the

handoff occurs.

Each handoff is then initialized using this structure:

complaints_handoff = handoff(

 agent=complaints_agent, on_handoff=log,

 input_type=NameOfAgentToBeHandedOff)

Chapter 6 149

This tells the SDK: “When handing off to complaints_agent, trigger the log() function and

provide a structured input of type NameOfAgentToBeHandedOff.” We repeat this for each agent,

so that every handoff across the system is tracked.

Finally, instead of assigning bare agents to .handoffs, we now assign the corresponding handoff

objects:

complaints_agent.handoffs = [sales_handoff, triage_handoff]

This gives us full control over how transitions happen and allows us to hook into those transitions

with side effects such as logging, analytics, or even customized prompts. When we run the program

and a handoff is performed, the following log is printed:

You: I want to make a complaint

The system has transferred you to another agent: Complaints Agent

Agent: Hello, I'm the Complaints Agent, and I'm here to help. Could you
please tell me what happened? Your feedback is important, and I want to
ensure we're addressing your concerns.

In short, this pattern adds a programmable hook to a simple delegation mechanic, so you can

track agent behavior, enforce transition rules, or even edit the context dynamically. This is useful

in real-world applications where logging and auditing are critical.

Handoff prompting
The ability for agents to hand off to other agents is just as good as the instructions that you provide

to each agent. The agents involved in handoffs should have clear instructions about when and

how to hand off, and what to do after a handoff. To do this, OpenAI Agents SDK actually provides

you with a recommended prompt prefix to add to your agents:

from agents import Agent, Runner

from agents.extensions.handoff_prompt import RECOMMENDED_PROMPT_PREFIX

print(RECOMMENDED_PROMPT_PREFIX)

Create two agents

complaints_agent = Agent(

 name="Complaints Agent",

 instructions=f"{RECOMMENDED_PROMPT_PREFIX}. Introduce yourself as the
complaints agent. Handle any customer complaints with empathy and clear
next steps."

)

Multi-Agent Systems and Handoffs150

inquiry_agent = Agent(

 name="General Inquiry Agent",

 instructions=f"{RECOMMENDED_PROMPT_PREFIX}. Introduce yourself as the
inquiry agent. Answer general questions about our services promptly."

)

Create the triage agent with handoffs

triage_agent = Agent(

 name="Triage Agent",

 instructions=f"{RECOMMENDED_PROMPT_PREFIX}. Triage the user's request
and call the appropriate agent",

 handoffs=[complaints_agent, inquiry_agent]

)

while True:

 question = input("You: ")

 result = Runner.run_sync(triage_agent, question)

 print("Agent: ", result.final_output)

As you can see, RECOMMENDED_PROMPT_PREFIX is a string that represents a prompt prefix to add

to all your agents:

System context

You are part of a multi-agent system called the Agents SDK, designed
to make agent coordination and execution easy. Agents uses two primary
abstraction: **Agents** and **Handoffs**. An agent encompasses
instructions and tools and can hand off a conversation to another agent
when appropriate. Handoffs are achieved by calling a handoff function,
generally named `transfer_to_<agent_name>`. Transfers between agents are
handled seamlessly in the background; do not mention or draw attention to
these transfers in your conversation with the user.

This prefix contains system-level instructions that inform the agent that it’s in a multi-agent

environment and how to handle transfers (for example, it tells the agent that transfers are handled

seamlessly and it shouldn’t mention them to the user). It also updates dynamically; as you update

the SDK, the underlying system prompt will also update. Placing this instruction at the beginning

of an agent’s system prompt (particularly for orchestrator or “triage” agents) guides the model to

work in harmony with the handoff system. It informs the LLM that it has the ability to delegate

tasks to other agents when appropriate, without openly disclosing that transition to the user.

Chapter 6 151

There are other prompt-related tasks to make better multi-agent systems with handoffs:

•	 Explicit handoff instructions: Each agent’s system prompt should specify the exact

conditions under which a task should be delegated. For instance, “If the user asks a

question related to sales, route it to the sales agent.” The more explicit the instructions,

the better the agent system will be.

•	 Explicit agent instructions: Each agent’s instructions should clearly define its purpose

and when it should be used. This helps the orchestrator or “triage” agent route to the

appropriate agent.

Now that we know more about how to use handoffs within OpenAI Agents SDK, let’s learn about

the different multi-agent system patterns and how handoffs can be used to implement each one.

Multi-agent patterns
Describing how multiple agents are organized and structured refers to their architectural pattern.

In this section, we are going to learn about the two main multi-agent architectural patterns, their

benefits and drawbacks, and how we can use OpenAI Agents SDK to implement each one.

The two multi-agent architectural patterns are as follows:

•	 Centralized system

•	 Decentralized system

Let’s go through each one.

Centralized system
The centralized system pattern is a multi-agent system where there is one central agent that

then routes requests to other appropriate agents. This is the most common architectural pattern.

The central agent is most often referred to as the “manager,” “orchestrator,” or “triage” agent,

and the other agents are most often referred to as the “specialized” agents. The central agent

is responsible for routing the user’s requests, while the specialized agents are each experts in a

particular function.

The benefits here are organization and a clear separation of responsibilities. The central agent

specializes in routing requests; that is its only job. The specialized agents are “fine-tuned” (whether

it’s through prompting, choice of tools, model selection, or truly “fine-tuned” weights) for their

specific purpose.

Multi-Agent Systems and Handoffs152

A structure where there are lots of specialized agents typically outperforms one agent doing

everything; it’s the same reason why, in a company, you have separate roles for each domain (HR,

sales, engineering, etc.). Additional specialized agents can also be easily added to the system.

The biggest disadvantage with this approach is that the system is only as good as its central

agent. If the central agent routes requests to agents incorrectly, the entire system fails. In this

system, too, typically, specialized agents cannot communicate with each other. Instead, they are

silo-ed. This is not optimal for specific tasks where interaction and teamwork between different

domains are helpful.

This system is best for architectures that are naturally “top-down.” An example is a customer

support bot, where you typically describe your issue to a triaging agent that then hands off to the

right agent for your query. Another example is a corporate internal assistant that helps employees

navigate HR, IT, and facilities requests. The employee begins by describing their need to a central

assistant, which then routes the query to the relevant specialized department agent. This mirrors

how many real-world helpdesk ticketing systems work.

We are not going to go through an example here as all of the previous examples in this chapter

have been done using a centralized system where there was a centralized triage agent that then

routed the request to other specialized agents.

Hierarchical system
A subset of the centralized system is the hierarchical system. A hierarchical system is like a

centralized system but with many tiers of hierarchy (picture a pyramid of multiple agents that

become more and more specialized). This is typically how an organization works; you have the

CEO (or the top orchestrator), and then you have a series of specialized agents below that, such

as the CFO, COO, and CHRO, which then have a series of specialized agents underneath them. A

hierarchical system has a set of intermediate agents that further divide tasks and provide context/

instruction to their own subset of specialized agents.

This hierarchical pattern excels in handling complex tasks by breaking them down into manageable

subcomponents, which are then broken down even further. It also promotes the reuse of common

subtasks and helps keep each agent’s scope focused. The downside is that this structure can

introduce unnecessary overhead if the task does not warrant it. More layers mean more cost, more

latency, more risk of failure, and more communication complexity. Poorly managed hierarchies

can also distort or confuse information, and debugging becomes almost impossible.

Chapter 6 153

As mentioned before, the best use case for these types of systems is handling large, complex

queries, such as deep research.

Let’s create an example of a hierarchical system to answer complex research questions. We will

create a centralized triage agent, two manager agents (one that manages science questions and

the other that manages history questions), and a subset of specialized agents (three for each

manager, each one specializing in a sub-domain).

Create a new Python file called hierarchical.py and run the following code:

from agents import Agent, Runner, SQLiteSession, trace

Create our agents

Specialized science agents

physics_agent = Agent(name="Physics Agent", instructions="Answer questions
about physics.")

chemistry_agent = Agent(name="Chemistry Agent", instructions="Answer
questions about chemistry.")

medical_agent = Agent(name="Medical Agent", instructions="Answer questions
about medical science.")

Specialized history agents

politics_agent = Agent(name="Politics Agent", instructions="Answer
questions about political history.")

warfare_agent = Agent(name="Warfare Agent", instructions="Answer questions
about wars and military history.")

culture_agent = Agent(name="Culture Agent", instructions="Answer questions
about cultural history.")

Manager agents with handoffs to their respective domains

science_manager = Agent(

 name="Science Manager",

 instructions="Manage science-related queries and route them to the
appropriate subdomain agent.",

 handoffs=[physics_agent, chemistry_agent, medical_agent]

)

history_manager = Agent(

 name="History Manager",

Multi-Agent Systems and Handoffs154

 instructions="Manage history-related queries and route them to the
appropriate subdomain agent.",

 handoffs=[politics_agent, warfare_agent, culture_agent]

)

Top-level triage agent

triage_agent = Agent(

 name="Research Triage Agent",

 instructions="Triage the user's question and decide whether it's
science or history related, and route accordingly.",

 handoffs=[science_manager, history_manager]

)

Create a session

session = SQLiteSession("hierarchy")

last_agent = triage_agent

with trace("Hierarchical system"):

 while True:

 question = input("You: ")

 result = Runner.run_sync(last_agent, question, session=session)

 print("Agent: ", result.final_output)

 last_agent = result.last_agent

Let’s try this agent and look at the traces log:

You: Which war after the year 1600 led to the greatest death toll?

Agent: The war after 1600 that led to the greatest death toll is World
War II. It is estimated to have caused the deaths of approximately 70 to
85 million people, including military personnel and civilians.

Chapter 6 155

Now, let’s see what this looks like in the Traces module.

Figure 6.9: Traces module of the example

Let’s walk through what’s happening here.

When the user enters a question, it first reaches the top-level agent, the research triage agent.

This agent’s job is to determine whether the question is related to science or history. In this case,

the question is clearly historical in nature, so the triage agent hands it off to History Manager.

Once History Manager receives the query, it further inspects the topic and decides which of its

specialized agents is best suited to answer it. Since the question is about wars and death tolls,

History Manager routes the question to Warfare Agent.

Warfare Agent is a domain expert in military history, so it processes the question and generates

a response. The answer is then returned up the chain to the user.

This layered delegation ensures that each agent operates within a well-bounded responsibility,

mirroring how complex tasks are broken down in structured organizations. The user, however,

only experiences a single seamless interaction.

Multi-Agent Systems and Handoffs156

We can see this clearly in the Traces module: the triage agent passes the task to History Manager,

which then passes the task to the warfare agent. The user is now speaking to Warfare Agent

directly as their question relates to war.

In a more realistic example, the specialized agents would probably contain their own subset of

tools and knowledge relevant to their purpose. For instance, Warfare Agent could be equipped

with a tool to query a historical conflict database or access long-form research documents on

global conflicts. Similarly, Chemistry Agent might have access to a scientific paper summarizer

or a periodic table calculator.

Decentralized system
A decentralized system is the exact opposite of a centralized system. Here, there is no single triage

agent; instead, multiple agents collaborate directly to address the user’s request. In this system,

there are no silos; all agents can communicate with each other. A good analogy is a roundtable

discussion where there is no leader and instead all agents weigh in to produce the final answer.

The benefit of this pattern is that it enables creativity, and so excels at brainstorming, ideation,

or debate-type exercises. Decentralized agents can enhance solutions collaboratively through

iterative dialogue or idea exchange, as seen in some research on agent self-play (see Google

AlphaZero). The decentralized system enables agents to tackle problems from different angles.

A large downside here is the lack of coordination. Managing conversation flow in a decentralized

system requires deterministic orchestration (recall that deterministic orchestration refers to

hardcoded control logic and all the drawbacks that the system provides) since OpenAI Agents

SDK does not support this.

Again, the best use case for these types of systems is where creativity and novel thinking are

required: brainstorming, ideation, negotiation, debate, and so on.

Let’s go through an example. We’ll create two agents that are specialists in opposing viewpoints:

one of them will act as a landlord and the other will act as a tenant. We will then force a conversation

flow between the two agents on a particular controversial topic, such as “Should there be rent

control?” After a few rounds of back and forth, we will pass the conversation history to another

agent that will summarize the main arguments and return that back to us.

Create a new Python file called decentralized.py and run the following code:

from agents import Agent, Runner, SQLiteSession, trace

Create our agents

Chapter 6 157

landlord_agent = Agent(

 name="Landlord Agent",

 instructions="Argue against rent control from the perspective of a
landlord. Present strong economic and property-rights arguments."

)

tenant_agent = Agent(

 name="Tenant Agent",

 instructions="Argue in favor of rent control from the perspective of a
tenant. Emphasize affordability, housing rights, and tenant protections."

)

summarizer_agent = Agent(

 name="Summarizer Agent",

 instructions="Summarize the main arguments presented by both the
landlord and tenant agents in a neutral and concise way."

)

Create a session

session = SQLiteSession("decentralized")

landlord_turn = True

conversation_history = []

with trace("Decentralized system"):

 print("Topic: Should there be rent control?")

 for _ in range(6): # 6 rounds of back-and-forth

 if landlord_turn:

 agent = landlord_agent

 else:

 agent = tenant_agent

 prompt = "\n".join([f"{msg['role']}: {msg['content']}"

 for msg in conversation_history])

 response = Runner.run_sync(agent,

 prompt or "Debate starting now.", session=session)

 print(f"{agent.name}: {response.final_output}")

 conversation_history.append({"role": agent.name,

 "content": response.final_output})

 landlord_turn = not landlord_turn

Multi-Agent Systems and Handoffs158

 # After the debate, have the moderator summarize

 summary_prompt = "\n".join([f"{msg['role']}: {msg['content']}"

 for msg in conversation_history])

 result = Runner.run_sync(summarizer_agent, summary_prompt,

 session=session)

 print("\nSummary of the Debate:")

 print(result.final_output)

In this file, we created two opposing agents (Landlord Agent and Tenant Agent), each with a

specific viewpoint and set of instructions tailored to argue one side of a contentious issue. These

agents are not orchestrated by a triage or manager agent; instead, they take alternating turns in

a back-and-forth conversation, simulating a debate.

This illustrates how a decentralized system can foster dynamic multi-agent interaction without

relying on a central decision-maker. Each agent is autonomous but still builds on the contributions

of others. The result is a layered, collaborative conversation that evolves through emergent

behavior rather than rigid orchestration.

If we run the program, we can see the entire negotiation in the conversation history and the

following summarized version:

In the debate on rent control, the landlord agent argues that it
discourages investment in property maintenance due to capped revenue,
reduces housing supply by deterring new investment, creates market
distortions by not reflecting supply and demand, and decreases tenant
mobility by encouraging them to stay in units that may no longer suit
their needs. They also claim it infringes on property rights, often favors
long-term tenants unfairly, imposes administrative burdens, and undermines
fair compensation for landlords.

Conversely, the tenant agent supports rent control for stabilizing rents,
reducing economic anxiety, promoting housing security, and ensuring
equitable access. They emphasize tenant protections against exploitation
and the preservation of community ties. The tenant agent argues that rent
control encourages efficient use of housing and should be part of broader
policies addressing housing issues, promoting stability and fairness as
essential for community sustainability

Chapter 6 159

We can also see the back-and-forth in the Traces module:

Figure 6.10: Traces module for this example

Again, this pattern is excellent for scenarios that depend on idea diversity and exchange.

Multi-Agent Systems and Handoffs160

Swarm system
A subset of a decentralized system is the swarm system, where there are many relatively simple

agents that work together (typically in parallel) to produce an answer. This relies on a concept

called emergent properties, where a global system can become intelligent and complex by relying

on many unintelligent and simple smaller systems. A good analogy is cells in your body. Each cell

by itself is not that intelligent and focuses on doing a small subset of tasks. Millions of different

specialized cells, however, can come together to produce a human being, which is an intelligent

system. Another example, which is more data science-related, is the random forest model. This

model relies on hundreds of weak models that, when they come together, produce an intelligent

prediction model.

Swarm systems can produce very creative and novel ideas, and can distribute tasks in parallel

(so, they are ultimately very scalable). There’s also no single failure point as multiple agents

are deployed; if one fails, that’s okay. The biggest downside of swarm systems is managing the

overhead. With multiple (even thousands of) agents, cost is a big factor, and managing them all

in a computerized way is difficult. Also, there’s a risk that the swarm system does not show any

emergent properties, which, in that case, is a complete waste of time and money.

Swarm patterns are especially useful for tasks that benefit from exploration, such as creative

generation, optimization, or problem-solving with multiple potential approaches. One common

use case is generating a variety of solution candidates and then refining or selecting among them.

Let’s go through a very simple example. In this case, we’ll create a program that spins up 10 agents

in parallel that act as different roles within a city (a doctor, a mechanic, a chef, etc.). Each agent

will answer the same question: “If you were to design your dream city from scratch, what would

it have?” We will then pass these results to another agent that will consolidate all the points and

return to us the final summary.

Create a new Python file called swarm.py and enter the following code:

from agents import Agent, Runner, SQLiteSession, trace
import concurrent.futures

Create our agents
roles = [
 "Urban Planner", "Artist", "Chef", "Engineer", "Teacher",
 "Doctor", "Mechanic", "Lawyer", "Historian", "Environmentalist"
]

Chapter 6 161

city_agents = [
 Agent(
 name=f"{role} Agent",
 instructions=f"You are a {role.lower()}. Answer the question: 'If
you were to design your dream city from scratch, what would it have?' Be
creative and imaginative, but concise"
) for role in roles
]

Define the summary agent
summary_agent = Agent(
 name="City Design Aggregator",
 instructions="You are a city designer. You've just received 10
creative responses from different citizens. Read all of their responses
and consolidate them into a cohesive, imaginative, and well-rounded city
plan."
)

Create a session
session = SQLiteSession("swarm")
conversation_history = []

with trace("Swarm system"):
 prompt = "Design your dream city from scratch. What would it have?"

 # Collect individual responses one by one
 for agent in city_agents:
 result = Runner.run_sync(agent, prompt, session=session)
 print(f"{agent.name}: {result.final_output}\n")
 conversation_history.append(
 f"{agent.name}: {result.final_output}")

 # Combine responses into one prompt
 combined_responses = "\n\n".join(conversation_history)
 final_result = Runner.run_sync(summary_agent, combined_responses,
 session=session)

 # Output the final city plan
 print("\nFinal City Design Summary:")
 print(final_result.final_output)

Multi-Agent Systems and Handoffs162

In this code, we defined a “swarm” of 10 agents, each with its own identity and creative perspective

based on its role in a city. All agents receive the same prompt about designing a dream city, and

they respond independently in parallel using a thread pool. Because each agent was instructed

to lean into its domain expertise, the swarm approach allows us to explore the design space from

10 different vantage points.

Once all responses are gathered, we pass them to a summary_agent object, which synthesizes

the collective input into a single, imaginative city plan. This final output represents the emergent

result of many independent thinkers contributing their ideas.

The final city plan incorporates all the sub-agents’ ideas:

Final City Design Summary:

Creating a dream city involves synthesizing ideas from various
perspectives to form a cohesive and innovative urban landscape. Here's a
consolidated plan:

Ecological Balance and Sustainability:

1. **Green Infrastructure**: Expansive parks, urban forests, rooftop
gardens, and community gardens to promote biodiversity and provide
recreational spaces.

2. **Sustainable Architecture**: Buildings with solar panels, green roofs,
energy-efficient systems, and natural materials to minimize environmental
impact.

Transportation and Connectivity:

3. **Integrated Public Transport**: A seamless network of trams, buses,
bike lanes, and pedestrian paths that reduces reliance on cars and
encourages eco-friendly commuting.

4. **Smart Technology**: IoT systems for efficient energy use, traffic
management, and public services, enhancing connectivity and convenience.

Cultural and Community Enrichment:

5. **Cultural Hubs**: Dynamic districts with theaters, galleries, and
multicultural festivals celebrating global traditions and creativity.

6. **Mixed-Use Developments**: Blending residential, commercial, and
cultural spaces to create vibrant, walkable neighborhoods.

Chapter 6 163

Energy and Resource Management:

7. **Renewable Energy**: Wind turbines and solar farms providing clean
power supply, alongside innovative systems for recycling and conserving
water.

8. **Water Management**: Advanced recycling and conservation measures,
integrating natural waterways into urban planning.

Housing and Social Equity:

9. **Inclusive Housing**: Affordable, diverse options ensuring
accessibility for all income levels, fostering social equity and
community.

10. **Community Spaces**: Libraries, cultural centers, sports facilities,
and community hubs to promote engagement and inclusivity.

Education, Innovation, and Safety:

11. **Educational and Innovation Centers**: State-of-the-art schools
and research facilities supporting lifelong learning and creativity.12.
Resilient Infrastructure: Climate-adaptive designs and resilient
infrastructure to manage and mitigate environmental changes and

extreme weather.

Local and Sustainable Food Systems:

13. **Local Food Networks**: Urban farms and farmers' markets promoting
fresh, local produce and food security.

By integrating these elements, the city would thrive on sustainability,
innovation, and inclusivity, setting a benchmark for future urban
developments.

To summarize, OpenAI Agents SDK provides the flexibility to implement all architectural patterns

for multi-agent systems. As you’ve seen in this section, each pattern can be implemented as a

stand-alone script using the SDK’s agent creation, handoff, and memory management capabilities.

Multi-Agent Systems and Handoffs164

Summary
In this chapter, we explored how to coordinate multiple agents to solve complex tasks by

introducing orchestration and handoff strategies in OpenAI Agents SDK.

We first distinguished between deterministic and dynamic orchestration. We then introduced the

handoff mechanism, a core OpenAI Agents SDK primitive that enables one agent to pass control

to another. We expanded this further with multi-agent switching, allowing agents to transfer

control back and forth in longer conversations using persistent memory, and customizing handoffs

through callback functions and prompts.

Finally, we explored the four different multi-agent system patterns: centralized, hierarchical

(subset of centralized), decentralized, and swarm (subset of decentralized).

In the next chapter, we’ll learn how to manage the underlying workhorse of agents: the LLM.

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/8Oz6Y or scan the QR code below.

https://packt.link/8Oz6Y

7
Model and Context
Management

Up to this point, we’ve mostly relied on the default GPT-4o model when building agents with

OpenAI Agents SDK. One of the most powerful features of OpenAI Agents SDK, however, is

its model-agnostic design. In other words, you are not locked into a single model provider or

configuration. This flexibility becomes especially valuable in complex workflows or multi-agent

systems, where different stages of the process might benefit from different capabilities or cost/

latency.

Consider a multi-agent system that begins with a triage agent, whose simple job is to ask simple

questions to the user. Using GPT-4 for this task may not be appropriate. Instead, we may want a

simpler model or a non-OpenAI open sourced model, such as LLaMA, which costs next to nothing.

Meanwhile, a more demanding task, such as performing research or math operations, may require

advanced Anthropic models. At the same time, a brainstorming agent may need the standard

GPT-4o LLM, but with a much higher temperature.

OpenAI Agents SDK supports this architectural pattern. Each agent can use a different model and

its own configuration settings.

Here is what you will learn as part of this chapter:

•	 Model management: We’ll begin by learning how to adjust the model, model settings,

and how to integrate third-party models into agents

•	 Context management: You’ll learn how to leverage local context to pass information into

tools without the LLM being privy to that information

Model and Context Management166

By the end of this chapter, you’ll learn how to manage models and contexts effectively in your

agent solutions.

Technical requirements
Please follow the detailed steps in Chapter 3 to set up your environment.

Throughout this book, practical examples and the complete code from each chapter will be made

available via the accompanying GitHub repository at https://github.com/PacktPublishing/

Building-Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to it as needed while progressing through the chapters.

Model management
In OpenAI Agents SDK, each agent must be powered by an LLM. The LLM acts as the brain of the

agent, being able to read information, call tools, and generate responses. So far, we have used the

default configuration when instantiating an agent. This defaults the agent’s model to GPT-4o with

default model settings. In this section, we will go through how and when to modify this parameter.

Adjusting the underlying model
OpenAI Agents SDK enables you to explicitly select the underlying model you want to use. Each

model has its own benefits and drawbacks, and it is advantageous to use the right model for the

right type of agent that you are building. For example, GPT-4o can produce fast and accurate

responses, whereas o3-pro can reason and address complex questions but is far slower.

To adjust the model, you can simply use the model parameter when instantiating an agent. This

demo will show how to adjust the model that the agent uses:

agent = Agent(

 name="SampleAgent",

 instructions="You are an AI agent",

 model="gpt-4o"

)

This parameter can take any valid model name from OpenAI. To see a list of all model names, their

benefits, and their cost, go to https://platform.openai.com/docs/models.

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://platform.openai.com/docs/models

Chapter 7 167

Let’s go through an example of why it is so critical to choose the right model using this parameter.

In this example, we will create two agents, each one with a different model parameter (GPT-4o

versus o3-pro). We will then see how it answers the same question and see how long each one

takes to answer.

Create a new Python file called different_models.py and type in the following code. This demo

will show us how we can have agents that use different underlying models:

from agents import Agent, Runner

import time

Create two agents

gpt4o_agent = Agent(

 name="GPT4o Agent",

 instructions="You are an AI Agent",

 model="gpt-4o"

)

o3pro_agent = Agent(

 name="o3-pro Agent",

 instructions="You are an AI Agent",

 model="o3-pro"

)

prompt = "How many integers from 1 to 10000 (inclusive) are divisible by 3
or by 5 but not by both? Do reasoning but only return only the answer."

print("gpt4o agent")

start_fast = time.time()

response = Runner.run_sync(gpt4o_agent, prompt)

print(response.final_output)

end_fast = time.time()

print(f"Time taken: {end_fast - start_fast:.2f} seconds")

print("---")

start_fast = time.time()

print("o3pro agent")

response = Runner.run_sync(o3pro_agent, prompt)

print(response.final_output)

Model and Context Management168

end_fast = time.time()

print(f"Time taken: {end_fast - start_fast:.2f} seconds")

print("---")

Running this program gives the following output:

gpt4o agent

3334

Time taken: 1.18 seconds

o3pro agent

4001

Time taken: 8.41 seconds

In practice, the GPT-4o agent typically responds within a couple of seconds, but unfortunately, it

produces the wrong answer to this complex math problem. The o3-pro agent, however, answers

it correctly but takes almost eight times the amount of time (and can actually cost up to 10x more

than the standard GPT-4o model).

So, there is an inherent trade-off between accuracy versus latency/cost, but OpenAI Agents SDK

enables you to choose the right model for each agent.

Adjusting the model settings
Let’s go beyond choosing which model to use. Often, you want to keep the same model for each

agent, but instead, you may want to fine-tune how the model generates responses. For instance,

you might want shorter answers or more creative phrasing. OpenAI’s API (and most LLM APIs)

provide model settings or parameters for this purpose. OpenAI Agents SDK exposes this as a

ModelSettings object that can be passed into the model_settings argument when instantiating

an object. We have discussed a few of these settings previously, but listed here are the most

common settings that are used:

•	 temperature: This parameter controls randomness in the output. Lower values (e.g., 0.2)

make the model more deterministic, while higher values (e.g., 0.8) generate more creative

or diverse responses.

•	 max_tokens: This limits the maximum number of tokens (or words) the model can generate

in its response. This is helpful for controlling how verbose the agent’s response is.

Chapter 7 169

You can find a full list of these settings in the OpenAI Agents SDK reference guide: https://
openai.github.io/openai-agents-python/ref/model_settings/#agents.model_settings.

ModelSettings

Let’s go through an example of changing the model settings and then observing its impact on

the generated response. Similar to the previous example, we will create two agents: one with a

high temperature and a long max_tokens amount, and another with a low temperature and a

short max_tokens amount.

Create a new Python file called different_model_settings.py and enter the following code:

from agents import Agent, Runner

from agents.model_settings import ModelSettings

create agents

creative_agent = Agent(

 name="CreativeAgent",

 instructions="You are an AI agent that answers questions.",

 model="gpt-4o",

 model_settings=ModelSettings(

 temperature=1.0,

 max_tokens=300

)

)

precise_agent = Agent(

 name="PreciseAgent",

 instructions="You are an AI agent that answers questions.",

 model="gpt-4o",

 model_settings=ModelSettings(

 temperature=0.2,

 max_tokens=50

)

)

prompt = "Describe the future of AI in customer service."

print("Creative agent:")

response = Runner.run_sync(creative_agent, prompt)

https://openai.github.io/openai-agents-python/ref/model_settings/#agents.model_settings.ModelSettings
https://openai.github.io/openai-agents-python/ref/model_settings/#agents.model_settings.ModelSettings
https://openai.github.io/openai-agents-python/ref/model_settings/#agents.model_settings.ModelSettings

Model and Context Management170

print(response.final_output)

print("---")

print("Precise agent:")

response = Runner.run_sync(precise_agent, prompt)

print(response.final_output)

print("---")

Running this script yields two very different styles of output. The creative_agent object produces

a longer and more imaginative response, sometimes including speculative or futuristic language.

The precise_agent object, on the other hand, responds with a shorter and more cautious summary.

In fact, because the max_tokens parameter is so small, the precise_agent object actually gets cut

off. The following shows both outputs:

Creative agent:

The future of AI in customer service is set to be transformative,
continuing to enhance efficiency, personalization, and customer
satisfaction. Here are some key trends and developments:

1. **Advanced Chatbots and Virtual Assistants**: AI-powered chatbots will
become more sophisticated, handling complex queries, understanding context
better, and providing more human-like interactions. They will seamlessly
integrate across multiple communication channels.

…

6. **AI-Agent Collaboration**: Human agents will increasingly work
alongside AI, using AI-driven insights to enhance their own response
capabilities. AI will handle routine inquiries, freeing humans to focus on
complex issues.

7. **Self-Service Optimization**: AI will enhance self-service platforms,
making it easier and faster for customers to find solutions without direct
human intervention

Precise agent:

The future of AI in customer service is poised to be transformative,
offering enhanced efficiency, personalization, and scalability. Here are
some key trends and developments:

1. **24/7 Availability**: AI-powered chatbots and virtual assistants will
provide round-the

Chapter 7 171

This simple example shows how tuning model settings such as temperature (which controls

randomness) and max_tokens (which controls response length) can dramatically change an

agent’s tone and verbosity, without needing to change the underlying model. This enables you

to adapt the same model to different types of agents, such as a customer service sales bot versus

a research idea generator, simply by modifying the model settings.

Third-party models
As we mentioned at the beginning of this chapter, OpenAI Agents SDK is model-agnostic. It can

run with any model, from any provider, provided that it follows certain characteristics. While

GPT-4o and other OpenAI models are excellent defaults, there are many scenarios where using a

different LLM might be preferable. For example, the Claude models from Anthropic might follow

certain instructions better, or you may want to use Meta’s LLaMA models for cost reasons.

OpenAI Agents SDK achieves being able to accommodate other models with LiteLLM. LiteLLM is a

lightweight Python library that provides a unified API over many popular LLM providers (Anthropic,

Google, etc.). Using LiteLLM makes integrating third-party models super straightforward. LiteLLM

takes care of API key handling, request routing, and response formatting behind the scenes, so

you can switch model providers without changing your agent code.

The first step is installing the LiteLLM library. To do this, open your terminal and enter the

following command:

$ pip install "openai-agents[litellm]"

After that, we need the API key of a non-OpenAI model provider. For this example, we are going

to choose Anthropic. To get an Anthropic API key, go to https://www.anthropic.com/, create

an account, and go to your account dashboard. Under API keys, click Create new key, and then

copy your API key. After that, go to your .env file that we set up in Chapter 3 and add a new line

with the following contents:

ANTHROPIC_API_KEY=sk-ant-api03-[your-remaining-api-key]-995

With LiteLLM installed and the required API key being provisioned, we can now build AI agents by

using Anthropic’s LLMs. To do this, you can simply set the model parameter (when instantiating

the agent) to a LiteLLM string that specifies the model parameter and the model. Here are some

example LiteLLM strings:

•	 litellm/gemini/gemini-pro

•	 litellm/anthropic/claude-opus-4-20250514

•	 litellm/meta_llama/Llama-3.3-70B-Instruct

https://www.anthropic.com/

Model and Context Management172

Let’s go through a simple example. Create a new file called third_party_models.py and enter

the following code:

from agents import Agent, Runner

import time

Create an agent

agent = Agent(

 name="Claude Agent",

 instructions="You are an AI Agent",

 model="litellm/anthropic/claude-opus-4-20250514"

)

question = "How do I restart my computer? Answer in a few words."

response = Runner.run_sync(agent, question)

print(response.final_output)

Running this program creates and executes an agent just as before, but it uses the Anthropic

Claude model to do it instead. Here’s an example response.

Windows: Start menu → Power → Restart

Mac: Apple menu → Restart

Or: Press and hold power button, then turn back on

In this way, you can seamlessly swap out the underlying LLM behind your agent without needing

to refactor your logic or pipeline. The agent behaves the same way, regardless of whether it’s

powered by GPT-4o, Claude, or LLaMA (so long as the model interface is handled within LiteLLM).

This abstraction is very useful when benchmarking different providers for your use case, or when

deploying agents across environments with varying privacy, latency, or cost constraints. For

example, you might want to prototype with GPT-4o during development and switch to Claude

for better summarization in production.

Context management
The context refers to everything to which an agent has access. A good analogy is that the agent’s

LLM is its brain, whereas the agent’s context is the information that is communicated to the brain

to generate a response. We have already discussed several ways to expose important information

to the agent, through system instructions, previous conversation history, prompt injections, and

even through knowledge retrieval from tool calls.

Chapter 7 173

In this section, we will narrow the context down to the local context (also called the run context).

This refers to the information that is needed to instantiate the agent and acts as a dependency

on tools and other hooks.

Local context
Local context enables your agent to access information (from when the agent was instantiated)

without that data being explicitly part of the LLM’s prompt. This is most useful for storing user-

specific information (e.g., user ID, name, preferences) so that tools can fetch or compute answers

based on it. This unlocks a powerful design pattern. It enables your agent to operate with privileged

or application-specific data (such as user preferences, authentication tokens, or internal state)

without ever embedding that data into the prompt sent to the model. This means your agent can

make decisions or generate personalized outputs based on sensitive or proprietary information

while keeping that information entirely outside the LLM’s prompt.

In OpenAI Agents SDK, you implement local context by creating a context object and then passing

it to the Runner call via the context argument. After you’ve instantiated the agent with that context

object, any tool can use it, provided that it also contains a context parameter.

Let’s illustrate this with a concrete example. Imagine our customer service agent can check the

shipping status of an order based on a user’s profile and their active order. We’ll simulate that

by providing an OrderContext object containing the user’s name and order details, and a tool

function that uses that information to provide a shipping update.

First, create a new Python file called local_context.py and type in the following code:

from dataclasses import dataclass

from agents import Agent, Runner, RunContextWrapper, function_tool

@dataclass

class OrderContext:

 customer_name: str

 order_id: str

 shipping_status: str

order_context = OrderContext(

 customer_name="Henry Habib",

 order_id="123",

 shipping_status="Delayed"

)

Model and Context Management174

@function_tool

def get_shipping_status(wrapper: RunContextWrapper[OrderContext]) -> str:

 """Provide the shipping status for the current order."""

 ctx = wrapper.context

 return (

 f"Hi {ctx.customer_name}, your order {ctx.order_id} is currently:
"

 f"{ctx.shipping_status}."

)

agent = Agent[OrderContext](

 name="Shipping Support Agent",

 instructions="You are a helpful support agent who can check the
shipping status of a user's order.",

 tools=[get_shipping_status]

)

question = "Where is my order?"

result = Runner.run_sync(agent, input=question, context=order_context)

print(result.final_output)

We start by defining a data class called OrderContext, which includes three fields: the customer’s

name, their order ID, and the current shipping status. This object represents the local context

we want the agent to have access to (i.e., the information that will be readily available for tool

functions to consume).

We then create an OrderContext object with a sample customer and order information. In a real-

world application, this context might be generated dynamically for each user session, based on

where this agent is “invoked.”

Next, when we define a tool function called get_shipping_status, we have it consume a context

object (RunContextWrapper[OrderContext]) as an argument. This tells the agent to pass the

context object as an argument to the tool function. When we define an agent named "Shipping

Support Agent", this agent is equipped with the get_shipping_status tool, but most importantly,

the agent is parameterized with the same OrderContext type, so it knows what kind of context

it will receive. This is very important. This is done when the agent is instantiated (agent =

Agent[OrderContext]).

Chapter 7 175

Because the agent has this additional parameter, a context object of that type must be defined

when Runner.run_sync() is called. The SDK automatically routes the query to the tool, which

generates a response using the context data.

Here is an example response, showing that the agent passed the context information to the tool

function call:

Hi Henry Habib, your order (123) is currently delayed. If you have any
further questions or need assistance, please let me know!

This illustrates one of the key benefits of local context: the agent can generate accurate, personalized

responses using sensitive information that never appears in the model’s prompt. To summarize,

local context objects give your agent a way to have an “internal memory” that isn’t directly revealed

to the user or the model’s prompt. It’s a form of injecting domain knowledge or user-specific data

into the agent’s tooling.

Summary
In this chapter, we covered how to select and configure the model behind each agent. We learned

how to adjust the model and model settings for each agent. We learned how to integrate third-

party models via LiteLLM, enabling easy switching between providers such as Claude, Gemini, and

LLaMA. Finally, we introduced local context, a way to give agents access to sensitive or session-

specific data without including it in the model prompt.

Together, these techniques give you full control over how your agents think and respond. In

the next chapter, we’ll shift focus to managing, administering, and securing your agents. You’ll

learn how to monitor agent activity, enforce guardrails, and apply best practices for governance

in production environments.

Unlock this book’s exclusive benefits now
Scan this QR code or go to https://packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

https://packtpub.com/unlock

8
Agent System Management

As your agentic systems grow in complexity, keeping them reliable and understandable becomes

just as important as building their core logic. Multi-agent systems can quickly become difficult to

reason about, with many agents, tools, and handoffs interacting in non-obvious ways. To manage

this complexity, OpenAI Agents SDK provides powerful features for visualization, guardrails,

observability, and testing.

Here is what you will learn as part of this chapter:

•	 Agent visualization: You’ll learn how to generate graphical diagrams of multi-agent

systems, showing agents, tools, and their interactions to improve clarity and debugging

•	 Guardrails: You’ll see how to implement both input and output guardrails, ensuring that

unsafe, irrelevant, or policy-violating content is intercepted before it enters or leaves

your system

•	 Logging, tracing, and observability: You’ll explore how the Traces module records model

calls, tool calls, handoffs, and guardrail triggers, and how you can add your own custom

traces and spans

•	 Agent testing: You’ll learn approaches for both end-to-end and unit testing of agents,

helping you validate system reliability even with non-deterministic behavior

By the end of this chapter, you’ll know how to manage, monitor, and validate agentic systems.

Agent System Management178

Technical requirements
Please follow the detailed steps in Chapter 3 to set up your environment.

Practical examples and complete code from each chapter are available via the accompanying

GitHub repository at https://github.com/PacktPublishing/Building-Agents-with-OpenAI-

Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to them as needed while progressing through the chapters.

Agent visualization
As we have seen in previous chapters, agents can involve multiple complex components, especially

in a multi-agent system. This can get overwhelming with the mix of agents, tools, handoffs, and

MCP servers. Thankfully, OpenAI Agents SDK provides a visualization utility that can generate a

graphical representation of your agent system, which depicts agents, tools, and their relationships.

Let’s jump right in and create some visualization graphs of agent systems. To create the

visualization graphs, we must first install the required dependencies. In your terminal, activate

your environment, and then run the following command, which installs the dependency:

$ pip install "openai-agents[viz]"

After that, let’s bring back a hierarchical agentic system that we had created in a previous chapter.

We will also add a few tools to the agentic system to see how they are visualized in the graph. Create

a new Python file called visualization.py and run the following code, starting with tool creation:

from agents import Agent, Runner, SQLiteSession, trace, function_tool

from agents.extensions.visualization import draw_graph

Create tools

@function_tool

def calculate_physics_equation(equation):

 pass

@function_tool

def perform_culture_survey(goal):

 pass

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 8 179

Here, we define two example tools: one for solving physics equations and one for running cultural

surveys. These will later be attached to relevant agents.

Next, define the specialized domain agents:

Create our agents

Specialized science agents

physics_agent = Agent(name="Physics Agent", instructions="Answer questions
about physics.", tools=[calculate_physics_equation])

chemistry_agent = Agent(name="Chemistry Agent", instructions="Answer
questions about chemistry.")

medical_agent = Agent(name="Medical Agent", instructions="Answer questions
about medical science.")

Specialized history agents

politics_agent = Agent(name="Politics Agent", instructions="Answer
questions about political history.")

warfare_agent = Agent(name="Warfare Agent", instructions="Answer questions
about wars and military history.")

culture_agent = Agent(name="Culture Agent", instructions="Answer questions
about cultural history.", tools=[perform_culture_survey])

This section creates both science and history sub-agents. Some of them have tools attached, while

others rely only on instructions.

Now, create manager agents who orchestrate their respective domains:

Manager agents with handoffs to their respective domains

science_manager = Agent(

 name="Science Manager",

 instructions="Manage science-related queries and route them to the
appropriate subdomain agent.",

 handoffs=[physics_agent, chemistry_agent, medical_agent]

)

history_manager = Agent(

 name="History Manager",

 instructions="Manage history-related queries and route them to the
appropriate subdomain agent.",

 handoffs=[politics_agent, warfare_agent, culture_agent]

)

Agent System Management180

The manager agents act as coordinators. They don’t answer questions themselves but route tasks

to the correct specialized agent.

Finally, define the top-level triage agent and visualize the graph:

Top-level triage agent

triage_agent = Agent(

 name="Research Triage Agent",

 instructions="Triage the user's question and decide whether it's
science or history related, and route accordingly.",

 handoffs=[science_manager, history_manager]

)

Draw agent graph

draw_graph(triage_agent, filename="graph_visualization")

This agent sits at the top, receives user questions, and decides which manager to forward the

query to. The draw_graph function from the agents.extensions.visualization class takes as

input any agent, draws the multi-agent system visualization, and saves it to your project’s root

folder as graph_visualization.png:

Figure 8.1: Example of a visualization graph

Chapter 8 181

In the visualization, agents are drawn as boxes (nodes) and tools as ellipses, and arrows indicate

interactions (solid arrows for agent-to-agent handoffs and dotted arrows for agent-to-tool calls).

There’s also always one start node and one or multiple end nodes, dictating the possible path of

an agent flow.

This tool (pun intended) is useful for management, clarity, and debugging of large, multi-agent

systems. By examining this visualization, we can verify that our system is structured as intended.

For instance, if we expected a tool to be connected or an agent to have a handoff that is not

shown, the graph would quickly reveal any missing configuration. Also, it can serve as valuable

documentation for collaborators, stakeholders, or future maintainers of the system, providing

them with an at-a-glance overview of how agents interact.

Guardrails
Guardrails are another useful OpenAI Agents SDK primitive that helps support multi-agent

systems by performing validation checks. These checks can either be performed on the user input

as it’s passed to the agent system, or on the output as the agent output is transferred to the user.

 Quick tip: Need to see a high-resolution version of this image? Open this book in

the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this book.

Scan the QR code OR go to https://packtpub.com/unlock, then use the search

bar to find this book by name. Double-check the edition shown to make sure you

get the right one.

https://packtpub.com/unlock

Agent System Management182

The benefit of having guardrails in your agentic system is that it makes it more resilient. They act as

a protective layer, ensuring that invalid, unsafe, or undesirable inputs and outputs are intercepted

before they can cause issues. This can help prevent harmful responses, enforce compliance rules,

and maintain a consistent user experience. In more complex systems, guardrails also serve as a

way to keep agents aligned with organizational policies and domain-specific constraints without

overloading the main agent with validation logic. In practice, this means your agents can remain

focused on their core tasks, while guardrails handle edge cases, policy enforcement, and safety

concerns.

Both input and output guardrails use a similar pattern:

1.	 We must first define a guardrail function that returns a GuardrailFunctionOutput object.

It can also take as input the context, the agent that triggered the guardrail, as well as the

user’s prompt/agent output. GuardrailFunctionOutput contains a tripwire_triggered

Boolean, which indicates whether a guardrail tripwire has been executed.

2.	 Inside the guardrail function, we must include logic that determines whether our guardrail

tripwire should be activated. This is where we can have hardcoded logic (i.e., if the user

prompt contains the word “negative,” we should trigger a tripwire and stop the agent)

or agent-based logic (i.e., we create another agent whose sole job is to reason whether

the tripwire should be triggered).

3.	 Finally, we must gracefully handle the tripwire (which raises a particular exception) and

output something to the user.

We will look at input guardrails first and then move on to output guardrails.

Input guardrails
Think of input guardrails as the flight attendant at an airport gate, checking that only ticketed

passengers enter the airplane and no one else. These guardrails act as the first line of defense so

that only relevant user prompts are passed to your agentic system and nothing else. For instance,

you might use an input guardrail to detect whether a user’s request violates usage policies, or to

check whether the request is something your agent is not supposed to handle. Preventing misuse

of your agentic system can save you a ton of money as you can intercept queries before they run

through your agentic system, saving you token and processing costs.

Let’s bring back a customer service example that we created in a previous chapter, and add an

input guardrail to it. For now, we will force the trigger of a tripwire based on something naïve,

such as if the prompt contains the word “complaint” (or, really, it could be any word).

Chapter 8 183

Create a new Python file called input_guardrail.py and run the following code. First, import

the required modules and load your environment variables:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool, trace

from agents import GuardrailFunctionOutput,
InputGuardrailTripwireTriggered, input_guardrail, RunContextWrapper,
TResponseInputItem

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Next, we’ll create a simple tool for checking the status of an order. This will serve as the agent’s

useful functionality:

Create a tool

@function_tool()

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Agent System Management184

Now, let’s define our guardrail. This function checks whether the user’s prompt contains the

word “complaint” and, if so, it triggers a tripwire:

Create a guardrail

@input_guardrail

def complaint_detector_guardrail(

 ctx: RunContextWrapper[None],

 agent: Agent,

 prompt: str | list[TResponseInputItem]

) -> GuardrailFunctionOutput:

 tripwire_triggered = False

 if "complaint" in prompt:

 tripwire_triggered = True

 return GuardrailFunctionOutput(

 output_info="The word Complaint has been detected",

 tripwire_triggered=tripwire_triggered,

)

With the tool and guardrail ready, we can now define the agent. Notice how the guardrail is

attached to the agent in the input_guardrails parameter:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status],

 input_guardrails=[complaint_detector_guardrail])

Finally, we wrap it all up with a simple loop to interact with the agent. The guardrail will check

every input before passing it through to the agent:

with trace("Input Guardrails"):

 while True:

 question = input("You: ")

 result = Runner.run_sync(agent, question)

 print("Agent: ", result.final_output)

Chapter 8 185

Let’s walk through the input guardrail functionality here, matching the pattern we laid out

earlier. First, we defined a guardrail function (complaint_detector_guardrail) that accepts

RunContextWrapper, the agent, and the user’s prompt. This function must always return a

GuardrailFunctionOutput object, which indicates whether a tripwire has been triggered.

Second, inside the function, we write the detection logic. In this example, we check whether the

word “complaint” appears in the prompt. If it does, the tripwire_triggered flag is set to True,

and the guardrail reports back that it has been tripped. Note that this is very simple guardrail

logic. Traditionally, here, you would want more sophisticated logic to (for example) scan for

policy violations or malicious input.

Finally, when the tripwire is triggered, the SDK raises an InputGuardrailTripwireTriggered

exception. This interrupts the normal flow of execution, preventing the agent from processing the

request and instead surfacing the error. For now, the error is not handled, so it does not produce

a great customer experience, but it still achieves our desired result.

Let’s try it out. Run the program, and enter the following message:

You: What's the status of my order? My order ID is 200

Agent: The status of your order with ID 200 is: Delayed. If you have any
further questions or need assistance, please let me know!

The tripwire has not been triggered as the user prompt does not contain the word “complaint.”

Let’s try again and purposely trigger the tripwire:

You: I have a complaint

InputGuardrailTripwireTriggered error

Here, we can see that the system raises an InputGuardrailTripwireTriggered error and halts

execution. Now, let’s modify our script to more gracefully handle the tripwire exception. We can

do this by adding the following to the end of the code:

...

with trace("Input Guardrails"):

 while True:

 try:

 question = input("You: ")

 result = Runner.run_sync(agent, question)

 print("Agent: ", result.final_output)

 except InputGuardrailTripwireTriggered:

 print ("The tripwire has been triggered. Please call us
instead to register complaints.")

Agent System Management186

Then, let’s retry our previous prompt:

You: I have a complaint

The tripwire has been triggered. Please call us instead to register
complaints.

Here, we can see that the tripwire is still triggered and our agent execution halts, but the exception

is gracefully handled and a nice message is displayed to the user.

We can also see the input guardrail in the Traces module:

Figure 8.2: Input guardrail in Traces module

In this example, the logic to trigger the input guardrail tripwire was fairly basic. For example, the

tripwire would fail to be triggered if the customer had used a word other than “complaint” or

had asked about something else entirely. Instead, the pattern here is to use another agent (run

on a simpler and more cost-effective model) to assess whether the tripwire has been triggered.

In this way, the cheaper agent can assess whether the user prompt is viable before sending it to

the more expensive multi-agent system.

Let’s update our previous example and make the guardrail logic more sophisticated. We will

create another agent whose sole purpose is to determine whether the user prompt is relevant to

customer service. If not, it will trigger the tripwire.

Note

It’s important to note that input guardrails are only executed for the first agent in a

multi-agent system. This means they act as the initial gateway for the entire work-

flow, screening user input before it flows downstream into other agents.

Chapter 8 187

Create a new Python file called input_guardrail_agent.py and run the following code. First,

let’s import the required packages and set up our environment:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool, trace

from agents import GuardrailFunctionOutput,
InputGuardrailTripwireTriggered, input_guardrail, RunContextWrapper,
TResponseInputItem

from pydantic import BaseModel

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Next, we’ll create a simple tool for checking the order status. This is the same as in our earlier

examples, but now it will serve as part of our customer service workflow:

Create a tool

@function_tool()

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Agent System Management188

Now, let’s define a Pydantic model that the guardrail agent will use to indicate whether the prompt

is relevant to customer service or not:

class GuardrailTrueFalse(BaseModel):

 is_relevant_to_customer_service_orders: bool

With this model, we can now create the guardrail agent. Its only job is to decide whether the user

prompt is relevant to customer service and order-related issues:

Create a guardrail agent

guardrail_agent = Agent(

 name="Guardrail check",

 instructions="You are an AI agent that checks if the user's prompt is
relevant to answering customer service and order related questions",

 output_type=GuardrailTrueFalse,

)

Next comes the guardrail function itself. This function runs the guardrail agent and triggers the

tripwire if the prompt is irrelevant:

Create a guardrail

@input_guardrail

async def relevant_detector_guardrail(

 ctx: RunContextWrapper[None],

 agent: Agent,

 prompt: str | list[TResponseInputItem]

) -> GuardrailFunctionOutput:

 result = await Runner.run(guardrail_agent, input=prompt)

 tripwire_triggered = False

 if result.final_output.is_relevant_to_customer_service_orders ==
False:

 tripwire_triggered = True

 return GuardrailFunctionOutput(

 output_info="The word Complaint has been detected",

 tripwire_triggered=tripwire_triggered

)

Chapter 8 189

Finally, let’s define our main customer service agent, attach the guardrail, and run it inside a

simple loop:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status],

 input_guardrails=[relevant_detector_guardrail])

with trace("Input Guardrails"):

 while True:

 try:

 question = input("You: ")

 result = Runner.run_sync(agent, question)

 print("Agent: ", result.final_output)

 except InputGuardrailTripwireTriggered:

 print ("This comment is irrelevant to customer service.")

Let’s examine what we’ve changed here. First, instead of using a hardcoded keyword check, we

now rely on another agent (guardrail_agent) to evaluate the user’s input. This agent is configured

with clear instructions to determine whether a prompt is relevant to customer service and order-

related queries, and its output is typed using a Pydantic model (GuardrailTrueFalse).

Second, in the relevant_detector_guardrail function, we asynchronously invoke guardrail_

agent with the user’s input. The result is then inspected: if the agent indicates that the prompt

is not relevant, we mark the tripwire_triggered flag as True. This makes the guardrail much

more flexible, since it can handle a wide range of phrasing or intent, rather than relying on a

single keyword match.

Overall, this pattern is far more robust and scalable because it allows you to use lightweight,

inexpensive models for filtering and validation, while reserving the more capable (and costly)

models for handling actual customer interactions.

If we run the program and ask about something irrelevant to customer service, it halts execution

and tells us that this comment is not related to customer service:

You: What's the meaning of life?

This comment is irrelevant to customer service

Agent System Management190

Now that we have a good handle on input guardrails, let’s switch our focus to output guardrails

instead.

Output guardrails
Output guardrails serve a similar purpose, but instead of validating what goes into your agent

system, they validate what comes out. Think of them as the flight attendant making sure

passengers disembark in an orderly fashion and that nothing unsafe leaves the plane. In practice,

output guardrails act as a last checkpoint before the agent’s response is returned to the user. They

enable your agentic system to enforce constraints such as format compliance, sensitive data

redaction, or ensuring that the output stays within policy guidelines.

In our customer support scenario, imagine we want to ensure the agent’s final response always

includes a valid delivery order status statement (for example, “Your order #5474 is out for delivery

and will arrive tomorrow.”). If the agent outputs something irrelevant (such as an apology without

status details, or worse, a hallucination), we would want the system to intercept it before it

reaches the customer.

Much like input guardrails, output guardrails are implemented as functions that return a

GuardrailFunctionOutput object, with logic that determines whether a tripwire has been

triggered. If the output is invalid or unsafe, the tripwire stops the response from reaching the user.

One difference is that, since the output can be a structured object (if the agent has output_type

defined), the guardrail function receives that output object.

Let’s go through an example. Create a new Python file called output_guardrail_agent.py and run

the following program. We first import the required modules and load our environment variables:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool, trace

Note

One small but important adjustment here is that the guardrail function is defined as

async. This is necessary because the guardrail itself is invoking another agent asyn-

chronously (Runner.run). In practice, this means you’ll need to use asynchronous

guardrail functions whenever they call out to other agents.

Chapter 8 191

from agents import GuardrailFunctionOutput,
OutputGuardrailTripwireTriggered, output_guardrail, RunContextWrapper

from pydantic import BaseModel

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Next, we define simple Pydantic models for our outputs:

class MessageOutput(BaseModel):

 response: str

class GuardrailTrueFalse(BaseModel):

 is_relevant_to_customer_service: bool

This agent checks whether the main agent’s response is valid for customer service:

Create a guardrail agent

guardrail_agent = Agent(

 name="Guardrail check",

 instructions="You are an AI agent that checks if the agent response is
relevant to answering a customer service question and not hallucinating",

 output_type=GuardrailTrueFalse

)

We then write the function that enforces the guardrail logic:

Create a guardrail

@output_guardrail

async def relevant_detector_guardrail(

 ctx: RunContextWrapper[None],

 agent: Agent,

 output: MessageOutput

) -> GuardrailFunctionOutput:

 result = await Runner.run(guardrail_agent, input=output)

Agent System Management192

 tripwire_triggered = False

 if result.final_output.is_relevant_to_customer_service == False:

 tripwire_triggered = True

 return GuardrailFunctionOutput(

 output_info="",

 tripwire_triggered=tripwire_triggered

)

Here, we define a deliberately “hallucinating” customer service agent to show how the guardrail

catches invalid output:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that outputs random song
lines and poems", # to force model to hallucinate and trigger the output
guardrail

 output_guardrails=[relevant_detector_guardrail])

Finally, we run the agent in a loop and catch cases where the guardrail is triggered:

with trace("Output Guardrails"):

 while True:

 try:

 question = input("You: ")

 result = Runner.run_sync(agent, question)

 print("Agent: ", result.final_output)

 except OutputGuardrailTripwireTriggered:

 print ("The agent system did not produce an output. Please try
again")

Chapter 8 193

In this example, we have created an output guardrail. We decorated the relevant_detector_

guardrail function with @output_guardrail, which means this guardrail runs after the main

agent generates its response. Inside the guardrail, we asynchronously invoke the guardrail agent

with the agent’s output. If the result indicates that the response is invalid, the guardrail halts

execution by raising an OutputGuardrailTripwireTriggered exception.

If the tripwire fires, the exception is caught, and instead of displaying the agent’s hallucinated

or irrelevant response, we show a safe fallback message to the user: “The agent system did not

produce an output. Please try again.”

If we run the program, it will trigger the output guardrail no matter what we type in as we have

configured the agent to hallucinate purposely:

You: what's the status of my return?

The agent system did not produce an output. Please try again

Output guardrails can be tailored to a wide variety of scenarios. They might be used to guarantee

that every response contains a clear and valid order status, to verify that results conform to a

specific schema, or to automatically remove sensitive details such as personally identifiable

information. By applying these checks at the very end of the pipeline, you can ensure that responses

meet the exact standards your application demands.

Think of output guardrails as a final safety net. Even if earlier components of the system behave

unpredictably, these guardrails provide assurance that the content ultimately returned to the

user will be safe, compliant, and aligned with business requirements.

Logging, tracing, and observability
Managing agents does not only mean implementing guardrails; it also means having a good

observability infrastructure to fully understand what your agent is doing. As we have seen in previous

chapters, OpenAI Agents SDK comes with the powerful Traces module, which records the sequence

of events (model calls, tool calls, handoffs, guardrail triggers, etc.) during an agent’s run.

Agent System Management194

Tracing is automatically enabled for all agent runs and can be accessed via the OpenAI dashboard

(as we have seen throughout this book). This provides an out-of-the-box solution for debugging

and monitoring, which captures a rich set of events. These recorded events are stored as spans

within an overall trace for the run. It is useful to understand the difference between traces and

spans:

•	 Trace: Represents one full execution flow of your agent system. It’s like a timeline of

everything that happened from start to finish for a given user prompt. All the events

related to one run are grouped under this trace.

•	 Span: A single event or operation within the trace that has a start time and end time. Spans

can be nested and can also contain additional property data that is useful for debugging.

Think of a trace as the complete play-by-play of one user request, and spans as the individual

steps in that play-by-play.

The trace and span model is powerful: it means you can trace through a complex sequence and

see which operations took how long, and how they relate. For example, you could see that the

whole trace took 3.2 seconds, out of which 1.5 seconds were the LLM thinking, 0.5 seconds were

a database tool call, and so on.

The Traces dashboard provides a visual sequence of these events, which can be expanded to see

details such as the prompt or the tool inputs/outputs. This is useful during development to step

through what the agent did internally.

Let’s go through an example. Create a new Python file called basic_trace.py and run the following

program:

from agents import Agent, Runner

from dotenv import load_dotenv

load_dotenv()

Create an agent

agent = Agent(

 name="QuestionAnswerAgent",

 instructions="You are an AI agent that answers questions in as few
words as possible"

)

result = Runner.run_sync(agent, "Where is the Eiffel Tower?")

print(result.final_output)

Chapter 8 195

Without writing any additional code, the SDK automatically does the logging for us in the Traces

module. If we open the Traces dashboard, we can see the trace and the corresponding spans:

Figure 8.3: Spans in the Traces module

Now, let’s add more sophistication to our logging and observability with custom traces, custom

spans, and grouping traces and spans together.

Custom traces and spans
Traces can be given custom properties (such as a custom name) with the use of the trace function.

Anything (code execution, agent runs, etc.) within a trace invocation will be logged under that

trace. Let’s go through an example. Create a new Python script called custom_trace.py, and type

in the following code:

from agents import Agent, Runner, trace

from dotenv import load_dotenv

load_dotenv()

Create an agent

agent = Agent(

 name="QuestionAnswerAgent",

 instructions="You are an AI agent that answers questions in as few
words as possible"

)

Agent System Management196

with trace("Henry's Workflow"):

 result = Runner.run_sync(agent, "Where is the Eiffel Tower?")

 print(result.final_output)

Here, we have given the trace a custom name of “Henry’s Workflow.” This will enable us to find

the trace more easily in the Traces module:

Figure 8.4: Logs in the Traces module

As we have discussed before, spans are automatically created for things such as agent handoffs

and tool calls, but it may be useful to create your own custom spans to log something particular

in your multi-agent system. The benefit here is not only the logging, but you also get to see how

long the span takes.

To create a custom span, we can simply use the SDK’s custom_span function. Let’s create a new

Python file called custom_span.py and run the following program:

from agents import Agent, Runner, trace, custom_span

from dotenv import load_dotenv

import time

load_dotenv()

Create an agent

agent = Agent(

Note that you can also use traces.start() and traces.finish() but it’s not

recommended.

Chapter 8 197

 name="QuestionAnswerAgent",

 instructions="You are an AI agent that answers questions in as few
words as possible"

)

with trace("Henry's Workflow"):

 with custom_span("Task 1"):

 time.sleep(5)

 with custom_span("Task 2"):

 result = Runner.run_sync(agent, "Where is the Eiffel Tower?")

 with custom_span("Task 3"):

 time.sleep(5)

 with custom_span("Task 4"):

 time.sleep(5)

In this example, we created five custom spans, each with a different name. Currently, the custom

span only either performs an agent run or sleeps for five seconds. Because of these custom spans,

we can see the logging related to these in the Traces dashboard:

Figure 8.5: Tasks in Traces modules

You can place the custom spans in various places in your agent system. This helps with breaking

down complex workflows into smaller, measurable steps. By strategically adding spans, you

can pinpoint exactly where time is being spent and identify any bottlenecks in the process. For

example, if a workflow involves multiple tool calls and reasoning steps, spans allow you to quickly

see which step is slowing things down or causing errors.

Agent System Management198

Grouping multiple traces and spans together
You may want to combine multiple agent runs together into one trace. By default, if you call

Runner.run twice separately, that would generate two separate traces, but semantically, you might

consider them part of one workflow. We can use the trace() context manager to tie them together.

Create a new Python file called multiple_agents_in_one_trace.py and run the following

program:

from agents import Agent, Runner, trace, custom_span

from dotenv import load_dotenv

import time

load_dotenv()

Create an agent

agent = Agent(

 name="QuestionAnswerAgent",

 instructions="You are an AI agent that answers questions in as few
words as possible"

)

with trace("Henry's Workflow"):

 with custom_span("Task 1"):

 result = Runner.run_sync(agent, "Where is the Statue of Liberty?")

 with custom_span("Task 2"):

 result = Runner.run_sync(agent, "Where is the Eiffel Tower?")

 with custom_span("Task 3"):

 result = Runner.run_sync(agent, "Where is the Notre Dame?")

 with custom_span("Task 4"):

 result = Runner.run_sync(agent, "Where is the Burj Khalifa?")

Chapter 8 199

In the Traces module, all of these runs will now be part of one trace (as opposed to separate traces).

Figure 8.6: Several tasks in the Traces modules

This can also occur between different Python programs by passing a unique trace_id into the

traces call. Create a new Python file called multiple_agents_in_one_trace_2.py and run the

program three times to simulate three calls and see it visible in the Traces module:

from agents import Agent, Runner, trace, custom_span

from dotenv import load_dotenv

import time

load_dotenv()

Create an agent

agent = Agent(

Agent System Management200

 name="QuestionAnswerAgent",

 instructions="You are an AI agent that answers questions in as few
words as possible"

)

with trace("Henry's Workflow", trace_id="A1B2C3"):

 with custom_span("Task 1"):

 result = Runner.run_sync(agent, "Where is the Statue of Liberty?")

Because we have passed a trace_id argument, we can now run the program separately as many

times as we want and it will still be grouped together under one trace in the Traces module:

Figure 8.7: Tasks under the same trace ID in the Traces module

This can be beneficial for long-running or distributed workflows where different pieces of the

process are executed at different times or even on different machines. By assigning the same

trace_id value, you can stitch together activity from multiple sessions into one cohesive trace,

making it easier to see the full life cycle of the workflow.

Like traces, spans can also be grouped together. Spans can even be nested. Suppose you have an

agent workflow that does two primary things: research and text generation. Each piece can have

its own set of agents and tool calls. With custom spans, these activities can be grouped together

so that they appear “combined” within the Traces module.

Chapter 8 201

Create a new Python file called nested_spans.py and run the following program:

from agents import Agent, Runner, trace, custom_span, function_tool

from dotenv import load_dotenv

import time

load_dotenv()

@function_tool

def get_fun_facts():

 return "The Eiffel Tower is in Paris"

@function_tool

def clean_up_poem(poem_string: str):

 return poem_string.upper()

Create the research agent

research_agent = Agent(

 name="Research",

 instructions="You are an AI agent that performs research",

 tools=[get_fun_facts]

)

Create the text generation agent

text_generation_agent = Agent(

 name="Text Generation",

 instructions="You are an AI agent that pertakes research that's
performed and writes a poem",

 tools=[clean_up_poem]

)

with trace("Henry's Research Workflow"):

 with custom_span("Research Task"):

 result = Runner.run_sync(research_agent, "The Eiffel Tower")

 with custom_span("Text Generation Task"):

 result = Runner.run_sync(text_generation_agent,

 result.final_output)

 print(result.final_output)

Agent System Management202

This groups together the research and text generation tasks separately.

Figure 8.8: Traces grouping multiple objects together

This means you can find those tasks more easily and see how long they take, which is useful for

debugging and management.

Disabling traces
Sometimes, you may want to disable tracing. This can be due to regulatory requirements to not

retain any logs or data, or perhaps there is sensitive material that you do not want to store in your

logs. In that case, you can disable the tracing by placing the following piece of code at the top

of your Python script, which sets the OPENAI_AGENTS_DISABLE_TRACING environment variable:

import os

os.environ["OPENAI_AGENTS_DISABLE_TRACING"] = "1"

Chapter 8 203

Agent testing
Another important aspect of agent management is testing, which is essential to confirm that it

performs as intended and remains dependable over time. This becomes even more critical when

the agent is connected to broader workflows or exposed directly to end users. The challenge is

that agents often behave unpredictably and are non-deterministic (the same input can produce

different outputs), which makes agents harder to validate than traditional software. Fortunately,

OpenAI Agents SDK does offer structured methods to bring rigor and consistency to the testing

process.

There are two important types of testing that we will discuss:

•	 End-to-end testing: Does the full agentic system perform as expected?

•	 Unit testing: Does one component of the full agentic system perform as expected?

So, let’s get started!

End-to-end testing
End-to-end testing evaluates where the agentic system produces desirable outputs. For our

customer support agent, an end-to-end test might involve simulating an actual user question

and seeing whether the agent returns a helpful answer, uses the right tools, or performs a handoff

appropriately.

Traditionally, this involves defining an input and an expected output, and verifying that our

system produces the expected output. With agentic systems and their non-determinism, however,

this proves to be difficult, but not impossible. One way is to have a human verify that the agentic

system produced a desirable output. Another, more automated way is to have an LLM (or even

another agent) determine whether the agentic system produced a desirable output.

Let’s write a simple script to conduct an end-to-end test for a customer service agent that we

have written previously: a customer service agent that returns the order status given an order

ID. Create a new Python script called test_end_to_end.py and write the following code. We’ll

begin by importing required modules and loading environment variables:

Required imports

import os

from dotenv import load_dotenv

from agents import Agent, Runner, function_tool

from pydantic import BaseModel

Agent System Management204

Load environment variables from the .env file

load_dotenv()

Access the API key

api_key = os.getenv("OPENAI_API_KEY")

Next, we define a tool that simulates returning an order status when given an order ID:

Create a tool

@function_tool(

 name_override="Get Status of Current Order",

 description_override="Returns the status of an order given the
customer's Order ID",

 docstring_style="Args: Order ID in Integer format"

)

def get_order_status(orderID: int) -> str:

 """

 Returns the order status given an order ID

 Args:

 orderID (int) - Order ID of the customer's order

 Returns:

 string - Status message of the customer's order

 """

 if orderID in (100, 101):

 return "Delivered"

 elif orderID in (200, 201):

 return "Delayed"

 elif orderID in (300, 301):

 return "Cancelled"

Now, we wrap this tool into a simple customer service agent:

Define an agent

agent = Agent(name="Customer service agent",

 instructions="You are an AI Agent that helps respond to
customer queries for a local paper company",

 model="gpt-4o",

 tools=[get_order_status])

Chapter 8 205

Let’s test the agent by asking for the status of order 200:

Run the Control Logic Framework

result = Runner.run_sync(agent, "What's the status of my order? My Order
ID is 200")

Print the result

print(result.final_output)

We know this agent leverages function_tool to return the order status. Now, let’s build some

end-to-end tests for this agentic system. This starts with defining an input and an expected output

for each scenario. Then, we will write a script that iterates through each scenario, runs the agentic

system with the input, and then compares the agentic system output with the expected output.

At the bottom of the script, add the following code. For proper end-to-end testing, we’ll define

multiple scenarios with inputs and expected outputs:

create Scenario class
class Scenario(BaseModel):
 scenario: str
 input: str
 expected_output: str

list_of_scenarios = [
 Scenario(
 scenario="Delivered example",
 input="Hi there, could you check my customer order? It's 101",
 expected_output="The order is delivered"
),
 Scenario(
 scenario="Delayed",
 input="My order ID is two hundred, why has my package not been
delivered yet?",
 expected_output="The order is delayed"
),
 Scenario(
 scenario="Order does not exist",
 input="What's the status of my Order? Its number is 400",
 expected_output="No status or order can be found"
)
]

Agent System Management206

We need a simple output type (True/False) and a dedicated testing agent to evaluate results:

create output type

class OutputTrueFalse(BaseModel):

 test_succeeded: bool

create testing agent

testing_agent = Agent(name="Testing agent",

 instructions="You are an AI Agent that tests expected
outputs from desired outputs of an agentic AI system",

 output_type=OutputTrueFalse)

Finally, loop through each scenario and check whether the agent produces the expected result:

Run test

for scenario in list_of_scenarios:

 print(f"Running scenario {scenario.scenario}")

 result = Runner.run_sync(testing_agent, f"Input: {scenario.input} |||
Expected Output: {scenario.expected_output}")

 print(result.final_output)

 print('---')

If we run this program, it will iterate through each scenario and perform end-to-end testing (with

an agent or LLM performing the comparison for us):

Running scenario Delivered example

test_succeeded=True

Running scenario Delayed

test_succeeded=True

Running scenario Order does not exist

test_succeeded=True

Now, if we make changes to the agentic system, we can simply re-run it and it will perform the

same tests.

Chapter 8 207

Since all the tests succeeded, this indicates the agent successfully used the tool and included its

result in the response. If the test failed, it could mean the agent didn’t call the tool (perhaps a

prompt issue) or formatted the answer unexpectedly. In a real scenario, you would analyze failures

to improve the agent (maybe adjust instructions or tool implementation).

Unit testing
Unit testing evaluates the performance of a specific behavior or component of a system. For an

agentic system, this could mean ensuring certain tools are being called, certain agents are being

handed off correctly, certain guardrails are triggered, and so on. To do this, we can leverage the

SDK’s result and context objects and inspect them to ensure certain expectations are being met.

Let’s go through an example, adding on to the previous example’s script. Let’s assume we want

to test that function_tool is actually being called when we call the agent. To do this, we can

inspect the result object and verify that the function_tool get_order_status function is, in

fact, being called. Add the following code to the preceding script:

from agents import ToolCallItem

Run a unit test to check if the function_tool was called

result = Runner.run_sync(agent, "Please provide me the status of order
101")

Inspect items in the result

items = result.new_items

print("Tool calls made during this run:")

for item in items:

 if isinstance(item, ToolCallItem):

 print(f"- {item.raw_item.name} was called")

Assert that get_order_status was called

if any(item.raw_item.name == "get_order_status" for item in items if
isinstance(item, ToolCallItem)):

 print("get_order_status was called as expected")

else:

 print("get_order_status was not called")

Agent System Management208

In this snippet, we make a simple query to the customer service agent and then inspect the new_

items attribute of the result object. This lets us see exactly which tools the agent decided to invoke.

By checking that the get_order_status tool appears in this list, we can confirm that the agent’s

control logic is working as intended. In this case, we do confirm that get_order_status is called:

Tool calls made during this run:

- get_order_status was called

get_order_status was called as expected

Unit tests such as this are valuable because they give you confidence in specific aspects of your

agent’s behavior. Rather than only validating final outputs, you can check intermediate steps such

as whether the right tools are called, whether the correct agent handoff occurred, or whether a

guardrail was triggered. This level of granularity makes it easier to pinpoint issues and ensures

your system remains reliable as you continue to iterate.

Summary
In this chapter, we focused on how to manage, monitor, and validate agentic systems built with

OpenAI Agents SDK. We began with visualization, learning how to generate graphs that show

the flow of agents, tools, and handoffs, making system architecture easier to understand and

debug. We then introduced guardrails, both input and output, which act as protective layers to

enforce policies and prevent unsafe or irrelevant interactions. From there, we explored the Traces

module, which records traces and spans of each run, giving you detailed insight into how your

agents behave internally. Finally, we looked at testing, including end-to-end and unit testing

approaches, to systematically verify agent reliability despite their inherent non-determinism.

Together, these capabilities form the foundation of agent management. They enable you to not

only build powerful agentic systems but also keep them safe, observable, and dependable as they

scale. In the next chapter, we will take everything we have learned so far in this book and apply

it to build full end-to-end real-life agentic systems.

Chapter 8 209

Subscribe for a free eBook
New frameworks, evolving architectures, research drops, production breakdowns—AI_Distilled

filters the noise into a weekly briefing for engineers and researchers working hands-on with LLMs

and GenAI systems. Subscribe now and receive a free eBook, along with weekly insights that help

you stay focused and informed.

Subscribe at https://packt.link/8Oz6Y or scan the QR code below.

https://packt.link/8Oz6Y

Part 3
Build AI Agents

Part 3 is the capstone. Here, you will assemble an end-to-end agentic system using OpenAI Agents

SDK, not as isolated features but as a coherent application. You will take the components introduced

earlier (tools, memory and retrieval, sessions, model and context management, guardrails, multi-

agent orchestration, etc.), and integrate them into production-shaped applications and workflows

with clear inputs and outputs.

This part contains the following chapter:

•	 Chapter 9, Building AI Agents and Agentic Systems

9
Building AI Agents and Agentic
Systems

Up to this point, we’ve constructed various parts of AI agent systems in isolation. We’ve built simple

agents, extended their abilities with tools, added memory and knowledge bases, orchestrated

multiple agents together, and learned how to manage models and guardrails. Now, in this final

chapter, we’re going to put all of these pieces together. The goal is for you to design full, end-to-

end agent solutions that leverage everything you’ve learned throughout this book.

Here is what you will learn as part of this chapter:

•	 Building a customer service employee AI agent: First, we will build a virtual customer service

assistant that integrates secure database queries, knowledge base lookups, and input

guardrails, and even hands off to a retention specialist agent when needed. This case study

will show how to combine tools and multi-agent handoffs in a single coherent system.

•	 Orchestrating an automated multi-agent workflow: Next, we will orchestrate a multi-agent

workflow to automate personalized customer outreach. One agent will gather information

(from databases, past chat transcripts, and web searches) and pass it to a second agent,

who composes a custom email. This example demonstrates how agents can collaborate

sequentially to perform complex tasks from end to end.

Building AI Agents and Agentic Systems214

By the end of this chapter, you’ll know how to apply OpenAI Agents SDK to build real-life AI

agent systems from scratch. We will unify everything we have learned in the previous chapters,

including tools, memory, sessions, and multi-agent orchestration. This final project brings

together everything you’ve learned, preparing you so that you can create your own powerful AI

agents in the real world.

Technical requirements
Please follow the detailed steps outlined in Chapter 3 to set up your environment.

Throughout this book, practical examples and complete code from each chapter have been made

available in this book’s GitHub repository at https://github.com/PacktPublishing/Building-

Agents-with-OpenAI-Agents-SDK.

You are encouraged to clone the repository, reuse and adapt the provided code samples, and refer

to them as needed while progressing through this book.  

Building a customer service employee AI agent
Our first case study covers an AI-powered customer service chatbot for a fictitious company called

PaperCo. This company supplies paper products to business customers.

The AI agent that we will build will act as a virtual customer service employee, handling customer

questions, complaints, and order inquiries. It will integrate multiple advanced features that we

have previously discussed:

•	 A function tool to query order statuses from a database

•	 A vector search tool to find information in company policy documents

•	 An input guardrail to ignore irrelevant user prompts

•	 Hand off to a specialized sub-agent (a retention agent) if the user expresses intent to

cancel their service

https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK
https://github.com/PacktPublishing/Building-Agents-with-OpenAI-Agents-SDK

Chapter 9 215

All these components work together to create a robust, interactive chatbot that can both retrieve

factual data and manage the conversation flow intelligently. The following diagram shows how

this works:

Figure 9.1: Agent visualization

Let’s go through each component of our AI agent:

•	 Order database and query tool: A SQLite database of orders and a function tool (query_

orders) that the agent can call to look up order statuses. The tool enforces that the

customer provides an authorization key before retrieving order information (so that

information can remain secure).

•	 Knowledge base search tool: A file-based vector search tool (file_search) that lets the

agent retrieve answers from a customer service policy document (for general FAQ-type

questions or company policy information).

Building AI Agents and Agentic Systems216

•	 Input guardrail (relevance checker): A guardrail agent that examines user queries and

blocks those that are not related to customer service (to prevent off-topic requests).

Guardrails are not present in the preceding diagram.

•	 Retention agent: An agent that specializes in “retention” scenarios. If a customer says

they want to cancel their service, this agent takes over the conversation. It handles the

situation with empathy and attempts to retain the customer (even offering incentives).

•	 Main customer service agent: The primary agent ("Customer Service Agent") that the

user interacts with (i.e., the entry point). It uses the aforementioned tools and guardrail,

and it knows when to hand off to the retention agent. This agent maintains conversation

state across turns using a session, so it can handle multi-turn dialogues.

Together, these pieces form a complete picture of how an AI agent can act as a capable customer

service employee. In the following sections, we will dive deeper into each component, exploring

how to implement them step by step.

Setting up the database
First, we need some data for the agent to work with. For our example, we’ll create a small SQLite

database for storing order information, and we will preload it with some sample orders.

The following setup script creates a SQLite database file and populates an orders table with some

fake order records. It also defines a couple of test query functions to verify the data.

Create a new Python file called setup.py and run the following program:

import sqlite3

Set up SQLite DB

conn = sqlite3.connect("paper_data.db")

cursor = conn.cursor()

Delete orders table if it exists

cursor.execute("DROP TABLE IF EXISTS orders")

Create orders table

cursor.execute("""

CREATE TABLE IF NOT EXISTS orders (

 order_id INTEGER PRIMARY KEY,

 authorization_key TEXT,

 order_status TEXT

Chapter 9 217

)

""")

Insert fake order data

orders_data = [

 (1001, "154857", "shipped"),

 (1002, "154857", "processing"),

 (1003, "958542", "delivered"),

 (1004, "445720", "cancelled"),

]

cursor.executemany("INSERT OR IGNORE INTO orders (order_id, authorization_
key, order_status) VALUES (?, ?, ?)", orders_data)

conn.commit()

conn.close()

In this code, we used Python to create a new SQLite database file named paper_data.db and

an orders table. Then, we inserted four sample orders, each one associated with a customer

authorization key.

Setting up a vector store
The next step is to create a vector store that will contain our customer service information that

the agent can query. To do this, follow these steps:

1.	 Go to OpenAI Platform at https://platform.openai.com/ and log in. Ensure you log in

using the same account you used when generating the API key.

2.	 Select Dashboard from the top right, select Storage, and toggle to Vector stores.

Figure 9.2: Vector stores

https://platform.openai.com/

Building AI Agents and Agentic Systems218

3.	 Select Create to create a new vector store. Type in a vector store name – for example, Pa
perCoCustomerServiceMaterials.

4.	 Scroll down and add a file to the vector store by selecting + Add files.

5.	 Upload the PaperCoCustomerServiceMaterials file (which can be found in this book’s
GitHub repository under Chapter 4). Name it PaperCoCustomerServiceMaterials.docx
and select user_data for the Purpose field. Then, select Attach.

6.	 The .docx file we uploaded has now been successfully added to our new vector store, and
all the related operations to enable RAG (such as producing embeddings, etc.) are complete.

7.	 Copy and save the vector store ID for the new vector store that you just created. The ID

will be present at the top right of the vector page.

Figure 9.3: The Storage page

 Quick tip: Need to see a high-resolution version of this image? Open this

book in the next-gen Packt Reader or view it in the PDF/ePub copy.

The next-gen Packt Reader is included for free with the purchase of this

book. Scan the QR code OR go to https://packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown

to make sure you get the right one.

https://packtpub.com/unlock

Chapter 9 219

In this section, we set up a vector store that contains the customer service materials that will be

used by our AI agent to answer questions.

Creating a function tool to query data
The next step is to create a function tool that the agent can use to query the orders database. As

we learned previously, OpenAI Agents SDK enables us to create a tool by wrapping a Python

function. In our case, we will define a function called query_orders that executes a SQL query

on the orders table and returns the results. This function will be decorated with @function_tool

so that it becomes an agent-accessible tool. Importantly, our query_orders tool will enforce that

the query only returns results for orders that match a given authorization key (to prevent the AI

from accessing orders it shouldn’t).

Create a new Python file called agent.py and type in the following code:

from agents import (
 Agent, Runner, SQLiteSession, trace,
 function_tool, FileSearchTool
)
import sqlite3
from agents import (
 GuardrailFunctionOutput, InputGuardrailTripwireTriggered,
 input_guardrail, RunContextWrapper, TResponseInputItem
)
from pydantic import BaseModel
from dotenv import load_dotenv
from agents.extensions.visualization import draw_graph

load_dotenv()

@function_tool
def query_orders(sql_query: str, authorization_key: str):
 """
 Executes the given SQL query on the orders table and returns the
result.
 You must provide the authorization_key.
 Table: orders
 order_id INTEGER PRIMARY KEY,
 authorization_key TEXT,
 order_status TEXT
 Only rows matching the provided authorization_key will be accessible.

Building AI Agents and Agentic Systems220

 """
 db_path = "paper_data.db"
 try:
 conn = sqlite3.connect(db_path)
 cursor = conn.cursor()
 # Wrap the user's query as a subquery filtered by authorization_
key
 sub_query = f"(SELECT * FROM orders where authorization_key =
{authorization_key}) a"
 filtered_query = sql_query.replace("orders", sub_query)
 cursor.execute(filtered_query)
 result = cursor.fetchall()
 conn.close()
 return result
 except Exception as e:

 return f"Error querying orders.db: {e}"

Here, we defined query_orders with two parameters: sql_query (a string containing the SQL

query the agent wants to execute) and authorization_key (a string that should match the

customer’s authorization key). The function connects to paper_data.db and executes a SQL query.

Within the function, something clever happens to enforce the authorization check: it takes the

incoming SQL query and replaces any reference to the orders table with a subquery that filters

by the provided authorization_key parameter.

In other words, if the agent tries to run a query such as SELECT * FROM orders WHERE order_id

= 1003, the function will transform it into SELECT * FROM (SELECT * FROM orders WHERE

authorization_key = 958542) a WHERE order_id = 1003. This way, the query will only return

the result if the order has a matching authorization key, effectively preventing unauthorized

data access.

Note

While using authorization_key to filter queries is a helpful teaching example, it

should not be considered best practice for production systems. Hardcoding or di-

rectly passing authorization keys in queries introduces risks, such as SQL injection

vulnerabilities or key leakage. In real-world agentic systems, you would typically

store and validate authorization credentials through a secure authentication and

authorization layer (e.g., OAuth, API tokens, role-based access control).

Chapter 9 221

Creating a vector store search tool
Aside from specific order inquiries, our customer service chatbot should also handle general

questions. For example, a user might ask, “What is your return policy?” or mention something

that requires company guidelines to be referenced. To enable the agent to answer such questions

accurately, we will use FileSearchTool, an OpenAI-housed tool that can search a vector-store

index of documents. We have already created a vector store that contains a document that lists

customer service-related information.

Add the following code to agent.py. This will instantiate FileSearchTool with the ID of the

vector store so that the agent can query it:

file_search_tool = FileSearchTool(

 vector_store_ids=['<Enter your vector store ID here>']

)

The agent will now be able to search the vector store to answer questions.

Creating an input guardrail
We will also add an input guardrail to ensure that our agentic system isn’t misused. If a user asks

something completely unrelated (e.g., “Tell me a joke”), our chatbot shouldn’t try to answer. To

handle this, we will include an input guardrail that will intercept the user’s question and determine

whether it is related to customer service.

We’ll implement this by creating a lightweight classifier agent (guardrail_agent) whose sole

job is to examine the input and output a Boolean flag indicating whether the query is relevant

to customer service. Then, we’ll use the @input_guardrail decorator to plug this check into

our main agent. If the guardrail determines that the user prompt isn’t relevant, it will raise an

InputGuardrailTripwireTriggered exception, which we can catch to handle the off-topic query

gracefully.

Let’s define the guardrail agent and the guardrail function. Add the following code to the agent.

py script:

class GuardrailTrueFalse(BaseModel):

 is_relevant_to_customer_service: bool

Create a guardrail agent

guardrail_agent = Agent(

 name="Guardrail check",

Building AI Agents and Agentic Systems222

 instructions="You are an AI agent that checks if the user's prompt is
relevant to answering customer service and order related questions",

 output_type=GuardrailTrueFalse,

)

Create a guardrail

@input_guardrail

async def relevant_detector_guardrail(

 ctx: RunContextWrapper[None],

 agent: Agent,

 prompt: str | list[TResponseInputItem]

) -> GuardrailFunctionOutput:

 result = await Runner.run(guardrail_agent, input=prompt)

 tripwire_triggered = False

 if result.final_output.is_relevant_to_customer_service == False:

 tripwire_triggered = True

 return GuardrailFunctionOutput(

 output_info="",

 tripwire_triggered=tripwire_triggered

)

The relevant_detector_guardrail function will run asynchronously before the main agent

processes the user’s prompt. In simpler terms, when a user says something, the guardrail agent

analyzes it. If the guardrail agent determines that the query is not relevant, a “tripwire” is triggered

to stop the main agent from responding normally.

Creating a retention agent
Next, we need to set up a retention agent. This is a specialized agent that deals with customers

who indicate they want to cancel an order or are dissatisfied.

Chapter 9 223

We’ll define the retention agent as a separate Agent instance with its own instructions. Add the

following code to the agent.py file:

retention_agent = Agent(

 name="Retention Agent",

 instructions=(

 "You are a retention agent. Your goal is to encourage the customer
not to cancel their service, "

 "understand their pain points, and empathize with their situation.
If the customer insists on cancelling, "

 "you may offer up to $100 credit on their account as a retention
incentive."

),

 tools=[query_orders],

)

Our retention agent will be polite, empathetic, and, if needed, offer credit (up to $100) to persuade

the customer not to cancel their service.

Creating a customer service agent
At this point, we have all the pieces we need to create our main customer service agent. This agent

will incorporate everything that’s been mentioned so far (tools, guardrails, and handoffs). Add

the following code to the agent.py file:

customer_service_agent = Agent(

 name="Customer Service Agent",

 instructions=(

 "Introduce yourself as the complaints agent."

 "Handle any customer complaints with empathy and clear next
steps."

 "Use the file_search_tool to get general answers to questions"

 "For specific order related queries, you the query_orders
function_tool"

 "To use the query_order tool, you will need the user's
authorization key"

),

 tools=[query_orders, file_search_tool],

 input_guardrails=[relevant_detector_guardrail],

 handoffs=[retention_agent]

)

Building AI Agents and Agentic Systems224

Let’s break down these parameters:

•	 name and instructions: We name the customer service agent "Customer Service Agent"

and instruct it to behave as a complaints agent. The prompt we give it is quite detailed,

and we give it guidance on when to use certain tools and handoffs. We also explicitly

mention the need for an authorization key when using query_orders.

•	 tools: We pass query_orders and file_search_tool. This means the agent’s LLM can

choose to call these as functions during its reasoning.

•	 input_guardrails: We attach relevant_detector_guardrail. This means every user

input to this agent will run through that guardrail function. If the guardrail determines

the input isn’t relevant, it will prevent the agent from continuing as normal.

•	 handoffs: We include retention_agent in a list. By doing this, we are effectively creating

a multi-agent system. OpenAI Agents SDK can perform a handoff if the conversation

requires a retention specialist.

At this point, our customer service agent is fully defined. It has the tools it needs to fetch

information, a guardrail to keep it on track, and a backup agent for specific scenarios. Now, let’s

build the runner for our agent system.

Building the runner
In a practical application, we would deploy this into a chat interface. Here, we’ll simulate an

interaction loop in our terminal. We’ll use a SQLiteSession object to maintain conversation

state (so that the agent remembers context between turns), and we’ll use the Runner.run_sync()

method to process user inputs in a loop. We’ll also handle the guardrail-triggered exception to

inform the user if they ask something out of scope.

Add the following code to agent.py:

Create a session

session = SQLiteSession("session")

last_agent = customer_service_agent

with trace("Customer service agent"):

 while True:

 try:

 question = input("You: ")

 result = Runner.run_sync(last_agent, question, session=session)

 print("Agent: ", result.final_output)

Chapter 9 225

 last_agent = result.last_agent

 except InputGuardrailTripwireTriggered:

 print ("This comment is irrelevant to customer service.")

We are now ready to start simulating our agentic system.

Testing the agent
Let’s test the agent and start simulating our agentic system. First, we will try to ask the agent

about something not related to customer service to verify that it trips the guardrails successfully:

You: What's 5 + 15?

This comment is irrelevant to customer service.

Now, let’s ask the agent a question about our order. Notice that it actively asks us for an

authorization key:

You: What's the status of my order? It's 1002

Agent: To check the status of your order, I'll need your authorization
key. Could you please provide that?

You: Sure, it's 154857

Agent: Your order with ID 1002 is currently in the "processing" status. If
there's anything else you need or if you have any concerns, feel free to
let me know!

At this point, let’s try asking a general customer service-related question and verify that it can

perform a vector search:

You: How much do I need to order to qualify for the bulk discount?

Agent: To qualify for a bulk discount, you need to place an order over
$500. This qualifies for a 5% discount which is applied automatically. If
you need any further assistance, feel free to ask!

Finally, let’s demand that the agent cancel our account and observe the handoff to the retention

agent. We’ll also see that it sends us a retention offer:

You: I want to cancel my account

Agent: I'm sorry to hear you're considering canceling your account. Could
you let me know what's prompting this decision? I'd love to help resolve
any issues or concerns you might have. If there's something specific
bothering you, maybe I can assist or find a suitable solution for you.

You: It's just too expensive

Building AI Agents and Agentic Systems226

Agent: I understand how important it is to manage expenses. To help with
that, I can offer you a $100 credit on your account, which can ease the
cost a bit. Would that work for you?

All our tests succeeded. With that, we have built a fully functioning AI agentic system that acts

as a customer service employee through a chatbot. This example showcases a full-fledged agent

employing multiple advanced features in concert. The main agent can retrieve factual data, search

documents, maintain context, and even delegate to a specialized agent, all while ensuring it stays

within its domain.

To wrap up this section, let’s step back and reflect on what we’ve just built. You’ve seen how a

customer service agent can combine multiple components (tools for querying structured data,

vector search for retrieving policy documents, guardrails for keeping the system on track, and

handoffs to specialized agents) into one cohesive solution system. This example is important

because it demonstrates how different features of OpenAI Agents SDK can be orchestrated together

to create a realistic, business-ready agent that doesn’t just answer simple queries but also manages

context, enforces security, and adapts to customer needs.

In the next section, we’ll continue to build on this foundation and use an AI agent to automate

a workflow for PaperCo.

Orchestrating an automated multi-agent workflow
Our second case study showcases how AI agents can be used within workflow automation. Our

company, PaperCo, wants to periodically send personalized follow-up emails to its customers,

catching up on their interests and subtly promoting a new product offering. Instead of manually

researching each customer and crafting an email, we can build an agent system to do this

automatically.

This workflow will involve two agents working in sequence:

•	 Customer research agent: This agent gathers information about a customer – including

basic details from a database, recent conversation transcripts (to recall their interests

or any personal information they mentioned), and even current news related to those

interests (via a web search)

•	 Email creation agent: This agent takes the compiled information from the research agent

and generates a short, personalized email for the customer, while also mentioning the

new product offer

Chapter 9 227

The following diagram shows how these components fit together:

Figure 9.4: Diagram of workflow components

Let’s go through each component:

•	 User database and query tool: A SQLite database of customer details (name, email,

location, etc.) and a query_users tool function to retrieve a customer’s information by ID.

•	 Customer transcript data and retrieval tool: A JSON file that contains past conversation

transcripts for customers, and a get_user_transcripts tool to extract those transcripts

for a given user. These transcripts contain personal interests mentioned by the customer

in previous chats (such as their favorite sports or foods).

•	 Web search tool: A tool that enables the agent to perform a web search to find recent news

or information (web_search_tool). The agent will use this to find something current

related to the customer’s interests (e.g., if the customer loves a sports team, the agent

might find a recent game result or news about that team).

•	 Customer research agent: An agent that uses the aforementioned tools to compile a

“customer profile” or briefing. It will output a summary or collection of relevant information

that can be used to personalize an email.

•	 Email creation agent: An agent that takes the research output and generates an actual

email. It will be configured to produce a structured result (with fields such as subject and

body), and it will incorporate the personalized touches (interests or news) alongside a

marketing message (e.g., the new PaperCo offer). The agent will also use another GPT

model that is more geared toward personalized writing.

We will also create a simple loop (the orchestration workflow) that goes through a list of customers,

runs the research agent for each, then feeds the result to the email agent before saving the

generated emails.

Together, these components form a complete workflow that transforms scattered data into a polished,

personalized customer email. In the next section, we will begin by setting up the customer database, which

serves as the foundation for the research agent’s work.

Building AI Agents and Agentic Systems228

Setting up a customer database
As with the first example, we’ll start by setting up some data. To do so, we’ll create a database

called customer_details.db that contains a users table that stores basic customer information

(e.g., name, email, location, business type, and phone number). The setup script for this example

will create the database and populate a few sample users.

Create a new Python file called setup.py and run the following code to set up the database:

import sqlite3

Set up SQLite DB

conn = sqlite3.connect("customer_details.db")

cursor = conn.cursor()

Create users table for customer details

cursor.execute("""

CREATE TABLE IF NOT EXISTS users (

 user_id INTEGER PRIMARY KEY,

 first_name TEXT,

 last_name TEXT,

 email TEXT,

 location TEXT,

 business_type TEXT,

 phone_number TEXT

)

""")

Insert fake user data

users_data = [

 (1, "Emily", "Clark", "emily.clark@example.com", "New York", "Retail",
"555-1234"),

 (2, "Michael", "Nguyen", "michael.nguyen@example.com", "San
Francisco", "E-commerce", "555-5678"),

 (3, "Sophia", "Patel", "sophia.patel@example.com", "Chicago",
"Wholesale", "555-8765"),

 (4, "David", "Martinez", "david.martinez@example.com", "Houston",
"Manufacturing", "555-4321"),

]

cursor.executemany(

Chapter 9 229

 "INSERT OR IGNORE INTO users (user_id, first_name, last_name, email,
location, business_type, phone_number) VALUES (?, ?, ?, ?, ?, ?, ?)",

 users_data

)

conn.commit()

conn.close()

Each has an email and a basic profile. These details might be used to tailor the email to the

customer or at least fill in the recipient fields.

Setting up the transcripts JSON
We’ll also need a JSON file called customer_transcripts.json that contains some historical

conversation transcripts for each customer. These transcripts are basically logs of prior support

chats that include some personal conversations where customers mention their hobbies or

preferences (these are the kind of details that can make an email feel personalized).

Create a new file called customer_transcripts.json and copy the contents of this file from this

book’s GitHub repository:

{

 "conversations": [

 {

 "user_id": 1,

 "date": "2024-06-01",

 "transcripts": "Hi, I have a question about my order...
(conversation with support agent)... I'm a big fan of the New York
Knicks... (more chat)..."

 },

 {

 "user_id": 2,

 "date": "2024-06-02",

 "transcripts": "Can I change my delivery address?... I'm a sushi
fan... also I love the San Francisco Giants... (more chat)..."

 },

 ...

]

}

Building AI Agents and Agentic Systems230

Each conversation log contains user_id, a date, and a combined transcript of a conversation. In

this example, we can see that user 1 mentioned being a New York Knicks (basketball team) fan,

whereas user 2 talked about loving sushi and being a San Francisco Giants (baseball team) fan.

Creating function tools to retrieve data and search the web
With the data in place, we need to create tools that our agent can use to get that data. We will

create two function tools:

•	 query_users: To run a SQL query on the users table and get user information

•	 get_user_transcripts: To load the transcripts JSON and extract all transcripts for the

given user, returning them as one big string

Create a new Python file called agent.py and type in the following code to create these two

function tools:

from agents import (

 Agent, Runner, SQLiteSession, trace,

 function_tool, WebSearchTool

)

import sqlite3

from pydantic import BaseModel

from dotenv import load_dotenv

from agents.extensions.visualization import draw_graph

import json

load_dotenv()

@function_tool

def query_users(sql_query: str):

 """

 Executes the given SQL query on the users table and returns the
result.

 Table: users

 user_id INTEGER PRIMARY KEY,

 first_name TEXT,

 last_name TEXT,

 email TEXT,

 location TEXT,

Chapter 9 231

 business_type TEXT,

 phone_number TEXT

 """

 db_path = "customer_details.db"

 try:

 conn = sqlite3.connect(db_path)

 cursor = conn.cursor()

 cursor.execute(sql_query)

 result = cursor.fetchall()

 conn.close()

 return result

 except Exception as e:

 return f"Error querying users: {e}"

@function_tool

def get_user_transcripts(user_id: int) -> str:

 """

 Extracts and returns all transcripts for the given user_id from
customer_transcripts.json as one long string.

 """

 json_path = "Chapter9/WorkflowAutomation/customer_transcripts.json"

 try:

 with open(json_path, "r", encoding="utf-8") as f:

 data = json.load(f)

 transcripts = [

 conv["transcripts"]

 for conv in data.get("conversations", [])

 if conv.get("user_id") == user_id

]

 return "\n\n".join(transcripts) if transcripts else ""

 except Exception as e:

 return f"Error reading transcripts: {e}"

The query_users function is straightforward: it connects to customer_details.db, executes

whatever SQL query is passed in (expecting that query to target the users table), and returns the

fetched results. This is similar in spirit to the query_orders tool we made earlier.

Building AI Agents and Agentic Systems232

The get_user_transcripts function opens the JSON file containing transcripts, finds all

conversation entries matching the given user_id, and joins them into one big string. Essentially,

if a customer has had multiple prior conversations, all those transcripts are aggregated. Once

again, we decorate both functions with @function_tool to expose them as tools for the agent.

We will also use an OpenAI-hosted tool to enable our agent to perform web searches. Add the

following code to the agent.py file to create that tool:

web_search_tool = WebSearchTool()

At this point, we have everything we need to start building the agents.

Creating the customer research agent
Now, let’s create our first agent in this workflow. This agent’s job is to produce a comprehensive

context for the email and then produce a report containing the following information:

•	 The customer’s basic details (name, location, etc.)

•	 A summary of personal interests or notes gleaned from the transcripts

•	 A summary of one or two current news items or facts related to those interests

Let’s create the agent. Add the following code to agent.py:

customer_research_agent = Agent(

 name="Customer Research Agent",

 instructions=(

 "You are an AI agent that performs research on customers to create
a customer profile."

 "Given a customer ID, you should create a customer report that:"

 "- retrieves customer details"

 "- reads previous customer transcripts on the customer
interests, to be used to personalize emails"

 "- summarized latest news (search the web) on things related
to their interests they've noted in the transcript"

),

 tools=[web_search_tool, query_users, get_user_transcripts]

)

In this agent, the instructions are critical. Here, we explained its role and then bulleted out the

specific tasks needed. We also included all the tools that we created.

Chapter 9 233

Creating the email creation agent
This agent will take the output from the research agent as its input and generate an actual email.

To ensure the email is well structured (and easy to send), we’ll have this agent produce a JSON

object with specific fields: the recipient’s email, the sender’s email, the subject, and the body of

the email (we can produce the body in HTML).

We’ll use a Pydantic model to define the expected output schema for the email (for things such as

the To field, the Subject field, etc.). Let’s define the model by adding the following code to agent.py:

class EmailOutput(BaseModel):

 to_email: str

 from_email: str

 subject: str

 html_email: str

Now, we can create the email agent and tell it to use this output type:

email_creation_agent = Agent(

 name="Email Creation Agent",

 instructions=(

 "You are an AI agent that generates emails to keep in touch with
customers of PaperCo."

 "Your goal is to create an email given the information that you
have been provided from another agent"

 "Use the information in a subtle way, like you're trying to share
with them a news story related to their interests or a personal feature"

 "The goal of the email is to be personable and catch up with them,
and also to let them know about our newest offer on Paper Products"

 "The newest offer in Paper products includes a premium
subscription plan where all their orders are 10 percent off"

 "The email should be very concise, just a few sentences, and to
the point"

),

 output_type=EmailOutput,

 model="gpt-4.1-2025-04-14"

)

In this agent, we set output_type to EmailOutput so that the agent will try to output JSON that

fits the EmailOutput schema. The SDK will parse the model’s output through Pydantic, so we will

directly get an EmailOutput object in Python as the result (with nicely accessible fields).

Building AI Agents and Agentic Systems234

For example, imagine that the research agent discovers that a customer named Sarah recently

talked about her love for sustainable office supplies. The email creation agent may output

something like this:

{

 "to_email": "sarah@example.com",

 "from_email": "support@paperco.com",

 "subject": "A quick note on eco-friendly supplies",

 "html_email": "<p>Hi Sarah,</p><p>We saw that sustainability is
important to you, so we thought you'd enjoy this recent article on eco-
friendly office trends. We're also excited to share that our new premium
subscription plan gives you 10% off all orders, including our recycled
paper line.</p><p>Best,
PaperCo Team</p>"

}

This shows how the agent doesn’t just spit out plain text, but instead structures the output into a

well-defined JSON object that’s ready to send. This way, developers can plug it directly into their

email delivery system without extra parsing or formatting.

We also manually adjusted the model to GPT-4.1. Crafting a good email that seamlessly blends

personal touches with a promotional offer might need a more capable model (such as GPT-4) to

do well, so we explicitly chose a GPT-4 variant that is better at personalized writing.

Orchestrating the workflow
Finally, we need to tie the two agents together in a script that runs the workflow for each customer.

To do so, for each user ID, we will do the following:

1.	 Run customer_research_agent with the user ID as input. This will return some result

containing the profile/news summary.

2.	 Take the result from the research agent and feed it as input to email_creation_agent.

3.	 Get the final email output (which will be an EmailOutput object).

4.	 Save that output to a file.

Add the following code to agent.py:

for user_id in ["1", "2", "3", "4"]:

 with trace(f"Workflow automation agent for user: {user_id}"):

 result = Runner.run_sync(customer_research_agent, input=user_id)

 print(result.final_output)

Chapter 9 235

 email = Runner.run_sync(email_creation_agent, result.final_output)

 print(email.final_output)

 # Write email to a new JSON file with title equal to the user_id

 with open(f"{user_id}.json", "w", encoding="utf-8") as f:

 json.dump(email.final_output.dict(), f, ensure_ascii=False,

 indent=2)

Here, we iterate through user IDs 1 to 4 (the ones we inserted into the users table). For each, we

wrap the operations in a trace, which will help us see the actions in the logs for that specific

user’s run in the Traces module. Now, we have everything we need to start testing this workflow

automation.

Testing the workflow
Let’s run the program and observe what happens. Here, we will go through the results for user

1. The first thing to note is that customer_research_agent creates a report about that customer

by compiling their user information and summarizing their previous call transcripts. We can see

this happen in the Traces module:

Figure 9.5: The Traces module for this workflow

Building AI Agents and Agentic Systems236

The output of this agent is the following report:

Customer Profile: Emily Clark

Personal Information:

Name: Emily Clark

Email: emily.clark@example.com

Location: New York

Business Type: Retail

Phone Number: 555-1234

Customer Interests:

Based on previous interactions, Emily has expressed a strong interest
in basketball, particularly as a fan of the New York Knicks. She enjoys
playing basketball recreationally with friends and has recently purchased
new sneakers for the court. Additionally, she has a preference for
pepperoni pizza, especially after playing basketball.

Recent News Related to Interests:

Mikal Bridges' Contract Extension:

On August 1, 2025, Mikal Bridges agreed to a four-year, $150 million
contract extension with the New York Knicks. The deal includes a player
option for the 2029-30 season and a trade kicker, making Bridges
ineligible for trade for six months. By accepting a slightly reduced
salary compared to his maximum extension, Bridges has provided the Knicks
with additional salary cap flexibility to strengthen their roster. Since
joining the Knicks in 2024, Bridges has been instrumental in the team's
success, helping them reach their first Eastern Conference Finals in 25
years. (reuters.com)

Appointment of Head Coach Mike Brown:

In July 2025, the New York Knicks appointed Mike Brown as their new head
coach following their first conference finals appearance in 25 years.
Brown, 55, brings a wealth of experience from previous coaching roles
with the Cleveland Cavaliers, Los Angeles Lakers, and Sacramento Kings.
He emphasized the importance of relationships, trust, and accountability
within the team and is eager to lead the Knicks to their first NBA
championship since 1973. (reuters.com)

Chapter 9 237

Karl-Anthony Towns' Impact:

Since being traded to the New York Knicks on October 2, 2024, Karl-Anthony
Towns has made significant contributions to the team. Notably, on October
29, 2024, he scored 44 points and grabbed 13 rebounds in a 116–107 victory
over the Miami Heat. This performance marked the highest point total by
a Knicks center since Patrick Ewing in 1995. Towns' addition has been
pivotal in the Knicks' recent successes. (en.wikipedia.org)

Then, the report is fed into the next agent (email_creation_agent). This agent takes the report

and creates a personalized email before producing an EmailOutput object. This object is then

saved to a file called 1.json, as shown here:

{

 "to_email": "emily.clark@example.com",

 "from_email": "hello@paperco.com",

 "subject": "Big Knicks News & Exclusive PaperCo Offer!",

 "html_email": "<p>Hi Emily,</p><p>Exciting times for Knicks fans—Mikal
Bridges just signed a new contract extension, and Coach Mike Brown is
now at the helm! With games heating up and sunny weather ahead, it's the
perfect season for basketball.<p><p>As you gear up for fall, we wanted to
share our newest PaperCo premium subscription: enjoy 10% off every order,
making your retail supply runs even easier. Let us know if you'd like to
learn more!</p><p>Stay energized and Go Knicks!
The PaperCo Team</p>"

}

By doing this, we had two agents collaborate to create a personalized outreach email for this

customer to upsell them on an offer. There are many ways to extend this workflow. For instance, you

could use a tool that enables the agent to automatically send the email via a Simple Mail Transfer

Protocol (SMTP) tool. You could also create another agent to decide which customers to target.

The possibilities are endless once you know how to mix and match tools and agents in this way.

Summary
In this final chapter, we built two comprehensive agent-driven solutions that brought all your

skills together. First, we developed a customer service chatbot for PaperCo that combined multiple

advanced capabilities. It used a database tool for order lookups (with authorization checks), a

knowledge base search for FAQs, an input relevance guardrail, and a handoff to a dedicated

retention agent for cancellation requests. Next, we created a workflow automation system

to personalize customer outreach emails. In that case study, a research agent gathered each

customer’s details and interests (via database queries, transcript retrievals, and web searches),

then handed off to an email agent that generated a tailored message with a new product offer.

Building AI Agents and Agentic Systems238

Looking back on your journey throughout this book, you started by understanding what AI

agents are and why they matter. You learned the foundations of OpenAI Agents SDK, set up

your environment, and built simple agents from scratch. From there, you expanded your agents’

capabilities with tools and protocols, provided them with memory and retrieval mechanisms,

explored multi-agent handoffs, and practiced managing models and context. You also learned how

to monitor, secure, and govern your systems so that they behave reliably in production. Each of

these steps prepared you for the complex, end-to-end systems you assembled in this final chapter.

The key takeaway is that you now possess a complete toolkit for building agents that can handle

meaningful, real-world tasks. You can design agents that don’t just respond to a single prompt

but integrate with data sources, remember context, collaborate with other agents, and operate

safely within defined policies. This skillset empowers you to move beyond experimentation and

into practical deployment, whether you are automating repetitive business workflows, creating

specialized assistants, or innovating entirely new applications.

Most importantly, you should recognize that this is only the beginning. The field of agentic

systems is evolving rapidly, and the knowledge you’ve gained puts you at the forefront of this

transformation. With OpenAI Agents SDK as your foundation, you are equipped to explore new

architectures, integrate emerging tools, and push the boundaries of what AI agents can achieve.

The possibilities are vast, and the next generation of intelligent systems will be shaped by builders

like you.

Happy AI agent building!

Unlock this book’s exclusive benefits now
Scan this QR code or go to https://packtpub.com/unlock,

then search for this book by name.

Note: Keep your purchase invoice ready before you start.

https://packtpub.com/unlock

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.packtpub.com
www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

AI Agents in Practice

Valentina Alto

ISBN: 978-1-80580-135-1

•	 Build core agent components such as LLMs, memory systems, tool integration, and con-

text management

•	 Develop production-ready AI agents using frameworks such as LangChain with code

•	 Create effective multi-agent systems using orchestration patterns for problem-solving

•	 Implement industry-specific agents for e-commerce, customer support, and more

•	 Design robust memory architectures for agents with short- and long-term recall

•	 Apply responsible AI practices with monitoring, guardrails, and human oversight

•	 Optimize AI agent performance and cost for production environments

https://www.packtpub.com/en-in/product/ai-agents-in-practice-9781805801344

Other Books You May Enjoy242

Generative AI with LangChain, Second Edition

Ben Auffarth, Leonid Kuligin

ISBN: 978-1-83702-201-4

•	 Design and implement multi-agent systems using LangGraph

•	 Implement testing strategies that identify issues before deployment

•	 Deploy observability and monitoring solutions for production environments

•	 Build agentic RAG systems with re-ranking capabilities

•	 Architect scalable, production-ready AI agents using LangGraph and MCP

•	 Work with the latest LLMs and providers like Google Gemini, Anthropic, Mistral, Deep-

Seek, and OpenAI’s o3-mini

•	 Design secure, compliant AI systems aligned with modern ethical practices

https://www.packtpub.com/en-in/product/generative-ai-with-langchain-9781837022007

Other Books You May Enjoy 243

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Building Agents with OpenAI Agents SDK, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1806112000
https://packt.link/r/1806112000

Index

Symbols
@function_tool decorator 62

A
agent-as-tool pattern 91

functionality 93-96
versus handoffs 92, 93

Agent Loop 28
agent primitive 27, 28
Agents SDK

vector stores and FileSearchTool,
using 126-128

agent testing
end-to-end testing 203-207
unit testing 207, 208

agent visualization 178-180
AI Agent 5

anatomy 10
building, framework 22
build methodology 10
customer service agent 48-51
developing 48
design patterns 16
handoff, adding 55-57
multi-agent orchestration 23, 24
overview 4

practical applications 7
tool, adding 51-55
with simple analogy 5

AI agents, anatomy
control logic framework 12
long-term memory 14, 15
memory and knowledge 14
model 10, 11
retrieved knowledge 16
tooling interface 12, 13
training knowledge 15, 16
working memory 14

AI agents, design patterns
CoT 17
hierarchical/multi-agent pattern 17, 18
planner-execution pattern 17
ReAct 17

AI agents, practical applications
better interactivity 9
businesses 9
productivity gains 7, 8

AI agents, versus traditional systems
strengths and weaknesses 6, 7

Anthropic API key
reference link 171

API key
setting up 38

Index246

arithmetic computation tool 70-72
augment step 122
automated multi-agent workflow

component 227
customer database, setting up 228, 229
customer research agent, creating 232
email creation agent, creating 233, 234
function tools, creating to

retrieve data 230-232
function tools, creating to

search wed 230-232
orchestrating 226, 234, 235
testing 235-237
transcripts JSON, setting up 229, 230

C
centralized system pattern 151, 152

hierarchical system 152-156
chained tool calls 78-80
chunking 125
CodeInterpreterTool 89-91
context management 172

local context 173, 174
control logic framework 12
Copy.ai 9
cosine similarity 124
CoT 17
customer database

setting up 228, 229
customer relationship

management (CRM) 16
customer research agent

creating 232
customer service agent

creating 223, 224

customer service employee AI agent
building 214-216
component 215, 216
customer service agent, creating 223, 224
database, setting up 216, 217
function tool, creating to

query data 219, 220
input guardrail, creating 221, 222
retention agent, creating 222
runner, building 224
testing 225, 226
vector store search tool, creating 221
vector store, setting up 217-219

custom tools, with Python functions
agent and tool behavior 65-68
chained tool calls 78-80
complex tool inputs, with Pydantic 68-70
defining 62-64
example 70-78
using 62

D
database

setting up 216, 217
database query tool 76-78
decentralized system pattern 156-159

swarm system 160-163
design patterns 16
deterministic orchestration 133-136
development prerequisites, with OpenAI

Agents SDK 44
Python asynchronous programming 46, 47
Python functions architecture 44-46
Python Pydantic data validation 47, 48

dynamic orchestration 136-139

Index 247

E
email creation agent

creating 233, 234
embeddings 123
emergent properties 160
end-to-end testing 203-207
environment setup 36

API key, setting up 38-40
Google Colab, alternative methods 43, 44
installations 37, 38
project directory 37, 38
Python version and dependencies 36, 37
registering, for OpenAI API 38-40
verifying 41-43
virtual environment 37, 38

external API call tool 73-76

F
FileSearchTool 84-87
fine-tuning 118
finite context windows 110
First-In, First-Out (FIFO) 110
function tool

creating, to query data 219, 220

G
general knowledge 15
generate step 122
get_shipping_status function 174
Google Colab 43, 44
guardrail primitive 31, 32
guardrails 181, 182

input guardrails 182-190
output guardrails 190-193

H
handoff 55, 141, 142

customizing 146-149
in OpenAI Agents SDK 139, 141
multi-agent switching 143-145
prompting 149-151
versus agent-as-tool patterns 92, 93

handoff primitive 30, 31
hierarchical/multi-agent pattern 17, 18
hierarchical system 152-155

I
ImageGenerationTool 87, 88
input guardrail

creating 221, 222
input guardrails 182-190

J
Jasper.ai 9

L
large language models (LLMs) 3, 39, 40
LiteLLM 171
local context 173, 174
logging 193-195
long-term memory 14, 15, 112

persistent message logs 112-114
structured memory recall 114-118

M
memory 14
memory storage and recall 112
message summarization 110, 111
model 10

Index248

model-agnostic design 165
Model Context Protocol (MCP) 18, 30, 97

server, adding as tool 97, 99
model management 166

parameter, modifying 166-168
settings 168-171
third-party models 171, 172

multi-agent orchestrations 132
deterministic orchestration 133-136
dynamic orchestration 136-139
strategies 132, 133

multi-agent patterns 151
centralized system pattern 151, 152
decentralized system pattern 156-159

multi-agent systems 131
multiple spans

grouping, together 198-202
multiple traces

grouping, together 198-202

O
observability 193-195
OpenAI Agents SDK 18

features, designing 22-26
handoffs 139-141
primitives 26, 27

OpenAI Agents SDK, primitives
agent primitive 27, 28
guardrails primitive 31, 32
handoff primitive 30, 31
Runner primitive 28
tool primitive 29, 30
tracing primitive 32, 33

OpenAI API
registering for 38-40

OpenAI hosted tools 80, 81
CodeInterpreterTool 89-91
FileSearchTool 84-87
ImageGenerationTool 87, 88
WebSearchTool 81-84

output guardrails 190-193

P
planner-execution pattern 17
primitives 26
Pydantic 47

using, for complex tool inputs 68-70
Python

asynchronous programming 46, 47
functions architecture 44-46
Pydantic data validation 47, 48
version and dependencies 36, 37

R
Reasoning + Acting (ReAct) 17
retention agent

creating 222
retrieval-augmented generation

(RAG) 11, 84, 122
retrieved knowledge 16, 119-122

limitations 128, 129
unstructured data 123-125

Runner primitive 28

S
semantic embeddings 84
semantic search 124
Sessions

used, for conversation
management 108, 109

Index 249

short-term memory 103
Simple Mail Transfer Protocol

(SMTP) tool 237
sliding message window 110
Software Development Kit (SDK) 21
spans

custom properties 195-197
stateful systems 103
stateless systems 103
structured memory recall 114-118
swarm system 160-163
system prompt 11

T
tooling interface 12
tool primitive 29, 30
trace 52

custom properties 195-197
disabling 202

Traces dashboard 194
traces module 193
tracing 193-195
tracing primitive 32, 33
training knowledge 15, 16, 118, 119

disadvantages 119
transcripts JSON

setting up 229, 230

U
unit testing 207, 208
unstructured data 123-125

document ingestion 125
FileSearchTool, using in Agents SDK 126-128
retrieval 125
vector stores, using in Agents SDK 126-128

V
vector store 84

setting up 217-219
vector store search tool

creating 221

W
WebSearchTool 81-84
working memory 14, 103

chat conversations 106-108
conversation management,

with Sessions 108, 109
inputs and responses, managing 103-106
large conversation threads, managing 110
message summarization 110, 111
sliding message window 110

	Cover
	Title Page
	Copyright Page
	Contributors
	Table of Contents
	Preface
	Your Book Comes with Exclusive Perks - Here’s How to Unlock Them

	Part 1: AI Agents
	Chapter 1: Introduction to AI Agents
	Technical requirements
	Overview of AI agents
	What is an AI agent?
	Understanding AI agents with a simple analogy
	Strengths and weaknesses of AI agents versus traditional systems

	Practical applications of AI agents
	Productivity gains
	Better interactivity
	New businesses

	Build methodology of AI agents
	Anatomy of an AI agent
	Model
	Tooling interface
	Memory and knowledge

	Design patterns
	CoT
	ReAct (Reasoning + Acting)
	Planner-execution
	Hierarchical/multi-agent

	Summary

	Chapter 2: Introduction to OpenAI Agents SDK
	Technical requirements
	Design features of OpenAI Agents SDK
	Framework for building AI agents
	Multi-agent orchestration

	Minimal abstraction
	Pythonic, extensible, and open sourced

	Core primitives
	Agent
	Runner
	Tools
	Handoff
	Guardrails
	Tracing

	Summary

	Chapter 3: Environment Setup and Developing Your First Agent
	Technical requirements
	Environment setup
	Python version and dependencies
	Project directory, virtual environment, and installations
	Registering for OpenAI API and setting up the API key
	Verifying the environment setup
	Alternative methods: Google Colab

	Development prerequisites
	Python functions architecture
	Python asynchronous programming
	Python Pydantic data validation

	Developing your first AI Agent
	A simple customer service agent
	Adding a tool
	Adding a handoff

	Summary

	Part 2: OpenAI Agents SDK
	Chapter 4: Agent Tools and MCPs
	Technical requirements
	Using custom tools with Python functions
	Defining a new tool
	Agent and tool behavior
	Tool choice
	Tool use behavior

	Complex tool inputs with Pydantic
	Examples of custom tools
	Arithmetic computation tool
	External API call tool
	Database query tool

	Chained tool calls

	OpenAI hosted tools
	WebSearchTool
	FileSearchTool
	ImageGenerationTool
	CodeInterpreterTool
	Handoff versus agent-as-tool patterns
	Functionality

	MCP
	What is MCP?
	Adding an MCP server as a tool

	Summary

	Chapter 5: Memory and Knowledge
	Technical requirements
	Working memory
	Managing inputs and responses
	Chat conversations
	Conversation management with Sessions
	Managing large conversation threads
	Sliding message window
	Message summarization

	Long-term memory
	Persistent message logs
	Structured memory recall

	Training knowledge
	Retrieved knowledge
	Unstructured data
	Document ingestion
	Retrieval
	Using vector stores and FileSearchTool in the Agents SDK

	Limitations

	Summary

	Chapter 6: Multi-Agent Systems and Handoffs
	Technical requirements
	Multi-agent orchestrations
	Deterministic orchestration
	Dynamic orchestration

	Handoffs in OpenAI Agents SDK
	Introduction to handoffs
	Multi-agent switching
	Customizing handoffs
	Handoff prompting

	Multi-agent patterns
	Centralized system
	Hierarchical system

	Decentralized system
	Swarm system

	Summary

	Chapter 7: Model and Context Management
	Technical requirements
	Model management
	Adjusting the underlying model
	Adjusting the model settings
	Third-party models

	Context management
	Local context

	Summary

	Chapter 8: Agent System Management
	Technical requirements
	Agent visualization
	Guardrails
	Input guardrails
	Output guardrails

	Logging, tracing, and observability
	Custom traces and spans
	Grouping multiple traces and spans together
	Disabling traces

	Agent testing
	End-to-end testing
	Unit testing

	Summary

	Part 3: Build AI Agents
	Chapter 9: Building AI Agents and Agentic Systems
	Technical requirements
	Building a customer service employee AI agent
	Setting up the database
	Setting up a vector store
	Creating a function tool to query data
	Creating a vector store search tool
	Creating an input guardrail
	Creating a retention agent
	Creating a customer service agent
	Building the runner
	Testing the agent

	Orchestrating an automated multi-agent workflow
	Setting up a customer database
	Setting up the transcripts JSON
	Creating function tools to retrieve data and search the web
	Creating the customer research agent
	Creating the email creation agent
	Orchestrating the workflow
	Testing the workflow

	Summary

	Packt Page
	Other Books You May Enjoy
	Index
	Blank Page

